DOI QR코드

DOI QR Code

Induction of CD4+ Regulatory and Polarized Effector/helper T Cells by Dendritic Cells

  • Manfred B. Lutz (Institute of Virology and Immunobiology, University of Wurzburg)
  • 투고 : 2015.11.28
  • 심사 : 2016.01.18
  • 발행 : 2016.02.29

초록

Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4+ T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4+ T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4+ T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4+ T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3- regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3+ Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.

키워드

과제정보

Research projects of the author that are published or mentioned in this article, were funded by the Wilhelm-Sander-Foundation and the German Research Council, DFG (LU851/8-1, TR52 TP-B7, IRTG1522).

참고문헌

  1. O'Garra, A., P. L. Vieira, P. Vieira, and A. E. Goldfeld. 2004. IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J. Clin. Invest 114: 1372-1378. https://doi.org/10.1172/JCI23215
  2. O'Garra, A., and P. Vieira. 2007. T(H)1 cells control themselves by producing interleukin-10. Nat. Rev. Immunol. 7: 425-428. https://doi.org/10.1038/nri2097
  3. Pletinckx, K., A. Dohler, V. Pavlovic, and M. B. Lutz. 2011. Role of dendritic cell maturity/costimulation for generation, homeostasis, and suppressive activity of regulatory T cells. Front. Immunol. 2: 39.
  4. Chakraborty, N. G., L. Li, J. R. Sporn, S. H. Kurtzman, M. T. Ergin, and B. Mukherji. 1999. Emergence of regulatory CD4+ T cell response to repetitive stimulation with antigen-presenting cells in vitro: implications in designing antigen-presenting cell-based tumor vaccines. J. Immunol. 162: 5576-5583. https://doi.org/10.4049/jimmunol.162.9.5576
  5. Littman, D. R., and A. Y. Rudensky. 2010. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140: 845-858. https://doi.org/10.1016/j.cell.2010.02.021
  6. Joo, H., K. Upchurch, W. Zhang, L. Ni, D. Li, Y. Xue, X. H. Li, T. Hori, S. Zurawski, Y. J. Liu, G. Zurawski, and S. Oh. 2015. Opposing roles of Dectin-1 expressed on human plasmacytoid dendritic cells and myeloid dendritic cells in Th2 polarization. J. Immunol. 195: 1723-1731. https://doi.org/10.4049/jimmunol.1402276
  7. Tjota, M. Y., and A. I. Sperling. 2014. Distinct dendritic cell subsets actively induce Th2 polarization. Curr. Opin. Immunol. 31: 44-50. https://doi.org/10.1016/j.coi.2014.09.006
  8. Walsh, K. P., and K. H. Mills. 2013. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol. 34: 521-530. https://doi.org/10.1016/j.it.2013.07.006
  9. O'Garra, A., L. Gabrysova, and H. Spits. 2011. Quantitative events determine the differentiation and function of helper T cells. Nat. Immunol. 12: 288-294. https://doi.org/10.1038/ni.2003
  10. van, P. N., F. Klauschen, and R. N. Germain. 2014. T-cell-receptor-dependent signal intensity dominantly controls CD4(+) T cell polarization in vivo. Immunity 41: 63-74. Ref ID: 10 10
  11. Lutz, M. B. 2013. How quantitative differences in dendritic cell maturation can direct T1/T2-cell polarization. Oncoimmunology 2: e22796.
  12. Lutz, M. B., and G. Schuler. 2002. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 23: 445-449. https://doi.org/10.1016/S1471-4906(02)02281-0
  13. Langenkamp, A., G. Casorati, C. Garavaglia, P. Dellabona, A. Lanzavecchia, and F. Sallusto. 2002. T cell priming by dendritic cells: thresholds for proliferation, differentiation and death and intraclonal functional diversification. Eur. J. Immunol. 32: 2046-2054. https://doi.org/10.1002/1521-4141(200207)32:7<2046::AID-IMMU2046>3.0.CO;2-M
  14. Ohl, L., M. Mohaupt, N. Czeloth, G. Hintzen, Z. Kiafard, J. Zwirner, T. Blankenstein, G. Henning, and R. Forster. 2004. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21: 279-288. https://doi.org/10.1016/j.immuni.2004.06.014
  15. Schumann, K., T. Lammermann, M. Bruckner, D. F. Legler, J. Polleux, J. P. Spatz, G. Schuler, R. Forster, M. B. Lutz, L. Sorokin, and M. Sixt. 2010. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32: 703-713. https://doi.org/10.1016/j.immuni.2010.04.017
  16. Ziegler-Heitbrock, L., P. Ancuta, S. Crowe, M. Dalod, V. Grau, D. N. Hart, P. J. Leenen, Y. J. Liu, G. MacPherson, G. J. Randolph, J. Scherberich, J. Schmitz, K. Shortman, S. Sozzani, H. Strobl, M. Zembala, J. M. Austyn, and M. B. Lutz. 2010. Nomenclature of monocytes and dendritic cells in blood. Blood 116: e74-e80. https://doi.org/10.1182/blood-2010-02-258558
  17. Weber, C., S. Meiler, Y. Doring, M. Koch, M. Drechsler, R. T. Megens, Z. Rowinska, K. Bidzhekov, C. Fecher, E. Ribechini, M. A. van Zandvoort, C. J. Binder, I. Jelinek, M. Hristov, L. Boon, S. Jung, T. Korn, M. B. Lutz, I. Forster, M. Zenke, T. Hieronymus, T. Junt, and A. Zernecke. 2011. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J. Clin. Invest 121: 2898-2910. https://doi.org/10.1172/JCI44925
  18. Berger, T. G., H. Schulze-Koops, M. Schafer, E. Muller, and M. B. Lutz. 2009. Immature and maturation-resistant human dendritic cells generated from bone marrow require two stimulations to induce T cell anergy in vitro. PLoS One. 4: e6645.
  19. Waithman, J., R. S. Allan, H. Kosaka, H. Azukizawa, K. Shortman, M. B. Lutz, W. R. Heath, F. R. Carbone, and G. T. Belz. 2007. Skin-derived dendritic cells can mediate deletional tolerance of class I-restricted self-reactive T cells. J. Immunol. 179: 4535-4541. https://doi.org/10.4049/jimmunol.179.7.4535
  20. Apostolou, I., and B. H. von. 2004. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199: 1401-1408. https://doi.org/10.1084/jem.20040249
  21. Akbari, O., R. H. DeKruyff, and D. T. Umetsu. 2001. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat. Immunol. 2: 725-731. https://doi.org/10.1038/90667
  22. Menges, M., S. Rossner, C. Voigtlander, H. Schindler, N. A. Kukutsch, C. Bogdan, K. Erb, G. Schuler, and M. B. Lutz. 2002. Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J. Exp. Med. 195: 15-21. https://doi.org/10.1084/jem.20011341
  23. Lutz, M. B., N. Kukutsch, A. L. Ogilvie, S. Rossner, F. Koch, N. Romani, and G. Schuler. 1999. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223: 77-92. https://doi.org/10.1016/S0022-1759(98)00204-X
  24. Naik, S. H. 2008. Demystifying the development of dendritic cell subtypes, a little. Immunol. Cell Biol. 86: 439-452. https://doi.org/10.1038/icb.2008.28
  25. Cheong, C., I. Matos, J. H. Choi, D. B. Dandamudi, E. Shrestha, M. P. Longhi, K. L. Jeffrey, R. M. Anthony, C. Kluger, G. Nchinda, H. Koh, A. Rodriguez, J. Idoyaga, M. Pack, K. Velinzon, C. G. Park, and R. M. Steinman. 2010. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell 143: 416-429. https://doi.org/10.1016/j.cell.2010.09.039
  26. Valdor, R., and F. Macian. 2013. Induction and stability of the anergic phenotype in T cells. Semin. Immunol. 25: 313-320. https://doi.org/10.1016/j.smim.2013.10.010
  27. Huynh, A., R. Zhang, and L. A. Turka. 2014. Signals and pathways controlling regulatory T cells. Immunol. Rev. 258: 117-131. https://doi.org/10.1111/imr.12148
  28. Jenkins, M. K., C. A. Chen, G. Jung, D. L. Mueller, and R. H. Schwartz. 1990. Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J. Immunol. 144: 16-22. https://doi.org/10.4049/jimmunol.144.1.16
  29. Schwartz, R. H. 2003. T cell anergy. Annu. Rev. Immunol. 21: 305-334. https://doi.org/10.1146/annurev.immunol.21.120601.141110
  30. Sloan-Lancaster, J., B. D. Evavold, and P. M. Allen. 1993. Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature 363: 156-159. https://doi.org/10.1038/363156a0
  31. Macian, F., F. Garcia-Cozar, S. H. Im, H. F. Horton, M. C. Byrne, and A. Rao. 2002. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109: 719-731. https://doi.org/10.1016/S0092-8674(02)00767-5
  32. Andris, F., S. Denanglaire, M. F. de, J. Urbain, and O. Leo. 2004. Naive T cells are resistant to anergy induction by anti-CD3 antibodies. J. Immunol. 173: 3201-3208. https://doi.org/10.4049/jimmunol.173.5.3201
  33. Wells, A. D., M. C. Walsh, J. A. Bluestone, and L. A. Turka. 2001. Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy. J. Clin. Invest 108: 895-903. https://doi.org/10.1172/JCI13220
  34. Greenwald, R. J., V. A. Boussiotis, R. B. Lorsbach, A. K. Abbas, and A. H. Sharpe. 2001. CTLA-4 regulates induction of anergy in vivo. Immunity 14: 145-155. https://doi.org/10.1016/S1074-7613(01)00097-8
  35. Perez, V. L., P. L. Van, A. Biuckians, X. X. Zheng, T. B. Strom, and A. K. Abbas. 1997. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6: 411-417. https://doi.org/10.1016/S1074-7613(00)80284-8
  36. Rudd, C. E., A. Taylor, and H. Schneider. 2009. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev. 229: 12-26. https://doi.org/10.1111/j.1600-065X.2009.00770.x
  37. Brunner, M. C., C. A. Chambers, F. K. Chan, J. Hanke, A. Winoto, and J. P. Allison. 1999. CTLA-4-Mediated inhibition of early events of T cell proliferation. J. Immunol. 162: 5813-5820. https://doi.org/10.4049/jimmunol.162.10.5813
  38. Verdoodt, B., T. Blazek, P. Rauch, G. Schuler, A. Steinkasserer, M. B. Lutz, and J. O. Funk. 2003. The cyclin-dependent kinase inhibitors p27Kip1 and p21Cip1 are not essential in T cell anergy. Eur. J. Immunol. 33: 3154-3163. https://doi.org/10.1002/eji.200323960
  39. Walunas, T. L., C. Y. Bakker, and J. A. Bluestone. 1996. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 183: 2541-2550. https://doi.org/10.1084/jem.183.6.2541
  40. Krummel, M. F., and J. P. Allison. 1996. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183: 2533-2540. https://doi.org/10.1084/jem.183.6.2533
  41. Baine, I., B. T. Abe, and F. Macian. 2009. Regulation of T-cell tolerance by calcium/NFAT signaling. Immunol. Rev. 231: 225-240. https://doi.org/10.1111/j.1600-065X.2009.00817.x
  42. Macian, F., S. H. Im, F. J. Garcia-Cozar, and A. Rao. 2004. T-cell anergy. Curr. Opin. Immunol. 16: 209-216. https://doi.org/10.1016/j.coi.2004.01.013
  43. Fathman, C. G., and N. B. Lineberry. 2007. Molecular mechanisms of CD4+ T-cell anergy. Nat. Rev. Immunol. 7: 599-609. https://doi.org/10.1038/nri2131
  44. Kriegel, M. A., C. Rathinam, and R. A. Flavell. 2009. E3 ubiquitin ligase GRAIL controls primary T cell activation and oral tolerance. Proc. Natl. Acad. Sci. U. S. A. 106: 16770-16775. https://doi.org/10.1073/pnas.0908957106
  45. Jeon, M. S., A. Atfield, K. Venuprasad, C. Krawczyk, R. Sarao, C. Elly, C. Yang, S. Arya, K. Bachmaier, L. Su, D. Bouchard, R. Jones, M. Gronski, P. Ohashi, T. Wada, D. Bloom, C. G. Fathman, Y. C. Liu, and J. M. Penninger. 2004. Essential role of the E3 ubiquitin ligase Cbl-b in T cell anergy induction. Immunity 21: 167-177. https://doi.org/10.1016/j.immuni.2004.07.013
  46. Lechner, O., J. Lauber, A. Franzke, A. Sarukhan, B. H. von, and J. Buer. 2001. Fingerprints of anergic T cells. Curr. Biol. 11: 587-595. https://doi.org/10.1016/S0960-9822(01)00160-9
  47. Safford, M., S. Collins, M. A. Lutz, A. Allen, C. T. Huang, J. Kowalski, A. Blackford, M. R. Horton, C. Drake, R. H. Schwartz, and J. D. Powell. 2005. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat. Immunol. 6: 472-480. https://doi.org/10.1038/ni1193
  48. Harris, J. E., K. D. Bishop, N. E. Phillips, J. P. Mordes, D. L. Greiner, A. A. Rossini, and M. P. Czech. 2004. Early growth response gene-2, a zinc-finger transcription factor, is required for full induction of clonal anergy in CD4+ T cells. J. Immunol. 173: 7331-7338. https://doi.org/10.4049/jimmunol.173.12.7331
  49. Knoechel, B., J. Lohr, S. Zhu, L. Wong, D. Hu, L. Ausubel, and A. K. Abbas. 2006. Functional and molecular comparison of anergic and regulatory T lymphocytes. J. Immunol. 176: 6473-6483. https://doi.org/10.4049/jimmunol.176.11.6473
  50. Zheng, Y., Y. Zha, G. Driessens, F. Locke, and T. F. Gajewski. 2012. Transcriptional regulator early growth response gene 2 (Egr2) is required for T cell anergy in vitro and in vivo. J. Exp. Med. 209: 2157-2163. https://doi.org/10.1084/jem.20120342
  51. Miah, M. A., S. E. Byeon, M. S. Ahmed, C. H. Yoon, S. J. Ha, and Y. S. Bae. 2013. Egr2 induced during DC development acts as an intrinsic negative regulator of DC immunogenicity. Eur. J. Immunol. 43: 2484-2496. https://doi.org/10.1002/eji.201243046
  52. Pape, K. A., R. Merica, A. Mondino, A. Khoruts, and M. K. Jenkins. 1998. Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance. J. Immunol. 160: 4719-4729. https://doi.org/10.4049/jimmunol.160.10.4719
  53. Groux, H., A. O'Garra, M. Bigler, M. Rouleau, S. Antonenko, J. E. de Vries, and M. G. Roncarolo. 1997. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737-742. https://doi.org/10.1038/39614
  54. Buer, J., A. Lanoue, A. Franzke, C. Garcia, B. H. von, and A. Sarukhan. 1998. Interleukin 10 secretion and impaired effector function of major histocompatibility complex class II-restricted T cells anergized in vivo. J. Exp. Med. 187: 177-183. https://doi.org/10.1084/jem.187.2.177
  55. Jooss, K., B. Gjata, O. Danos, B. H. von, and A. Sarukhan. 2001. Regulatory function of in vivo anergized CD4(+) T cells. Proc. Natl. Acad. Sci. U. S. A. 98: 8738-8743. https://doi.org/10.1073/pnas.151088898
  56. Wegner, J., S. Hackenberg, C. J. Scholz, S. Chuvpilo, D. Tyrsin, A. A. Matskevich, G. U. Grigoleit, S. Stevanovic, and T. Hunig. 2015. High-density preculture of PBMCs restores defective sensitivity of circulating CD8 T cells to virus- and tumor-derived antigens. Blood 126: 185-194.
  57. Burkly, L. C., D. Lo, O. Kanagawa, R. L. Brinster, and R. A. Flavell. 1989. T-cell tolerance by clonal anergy in transgenic mice with nonlymphoid expression of MHC class II I-E. Nature 342: 564-566. https://doi.org/10.1038/342564a0
  58. Rammensee, H. G., R. Kroschewski, and B. Frangoulis. 1989. Clonal anergy induced in mature V beta 6+ T lymphocytes on immunizing Mls-1b mice with Mls-1a expressing cells. Nature 339: 541-544. https://doi.org/10.1038/339541a0
  59. Kawabe, Y., and A. Ochi. 1990. Selective anergy of V beta 8+, CD4+ T cells in Staphylococcus enterotoxin B-primed mice. J. Exp. Med. 172: 1065-1070. https://doi.org/10.1084/jem.172.4.1065
  60. Rellahan, B. L., L. A. Jones, A. M. Kruisbeek, A. M. Fry, and L. A. Matis. 1990. In vivo induction of anergy in peripheral V beta 8+ T cells by staphylococcal enterotoxin B. J. Exp. Med. 172: 1091-1100. https://doi.org/10.1084/jem.172.4.1091
  61. Gabrysova, L., and D. C. Wraith. 2010. Antigenic strength controls the generation of antigen-specific IL-10-secreting T regulatory cells. Eur. J. Immunol. 40: 1386-1395. https://doi.org/10.1002/eji.200940151
  62. Gabrysova, L., K. S. Nicolson, H. B. Streeter, J. Verhagen, C. A. Sabatos-Peyton, D. J. Morgan, and D. C. Wraith. 2009. Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10-secreting Th1 cells. J. Exp. Med. 206: 1755-1767. https://doi.org/10.1084/jem.20082118
  63. Pletinckx, K., M. Vaeth, T. Schneider, N. Beyersdorf, T. Hunig, F. Berberich-Siebelt, and M. B. Lutz. 2015. Immature dendritic cells convert anergic nonregulatory T cells into Foxp3- IL-10+ regulatory T cells by engaging CD28 and CTLA-4. Eur. J. Immunol. 45: 480-491. https://doi.org/10.1002/eji.201444991
  64. Steinman, R. M., and M. C. Nussenzweig. 2002. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl. Acad. Sci. U. S. A. 99: 351-358. https://doi.org/10.1073/pnas.231606698
  65. Sakaguchi, S., F. Powrie, and R. M. Ransohoff. 2012. Re-establishing immunological self-tolerance in autoimmune disease. Nat. Med. 18: 54-58. https://doi.org/10.1038/nm.2622
  66. Sixt, M., N. Kanazawa, M. Selg, T. Samson, G. Roos, D. P. Reinhardt, R. Pabst, M. B. Lutz, and L. Sorokin. 2005. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22: 19-29. https://doi.org/10.1016/j.immuni.2004.11.013
  67. Azukizawa, H., A. Dohler, N. Kanazawa, A. Nayak, M. Lipp, B. Malissen, I. Autenrieth, I. Katayama, M. Riemann, F. Weih, F. Berberich-Siebelt, and M. B. Lutz. 2011. Steady state migratory RelB+ langerin+ dermal dendritic cells mediate peripheral induction of antigen-specific CD4+ CD25+ Foxp3+ regulatory T cells. Eur. J. Immunol. 41: 1420-1434. https://doi.org/10.1002/eji.201040930
  68. Hayden, M. S., and S. Ghosh. 2012. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 26: 203-234. https://doi.org/10.1101/gad.183434.111
  69. Lutz, M. B., A. Dohler, and H. Azukizawa. 2010. Revisiting the tolerogenicity of epidermal Langerhans cells. Immunol. Cell Biol. 88: 381-386. https://doi.org/10.1038/icb.2010.17
  70. Fontenot, J. D., J. P. Rasmussen, M. A. Gavin, and A. Y. Rudensky. 2005. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6: 1142-1151. https://doi.org/10.1038/ni1263
  71. Weih, F., and J. Caamano. 2003. Regulation of secondary lymphoid organ development by the nuclear factor-kappaB signal transduction pathway. Immunol. Rev. 195: 91-105. https://doi.org/10.1034/j.1600-065X.2003.00064.x
  72. Idoyaga, J., C. Fiorese, L. Zbytnuik, A. Lubkin, J. Miller, B. Malissen, D. Mucida, M. Merad, and R. M. Steinman. 2013. Specialized role of migratory dendritic cells in peripheral tolerance induction. J. Clin. Invest 123: 844-854.
  73. Baratin, M., C. Foray, O. Demaria, M. Habbeddine, E. Pollet, J. Maurizio, C. Verthuy, S. Davanture, H. Azukizawa, A. Flores-Langarica, M. Dalod, and T. Lawrence. 2015. Homeostatic NF-kappaB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42: 627-639. https://doi.org/10.1016/j.immuni.2015.03.003
  74. Travis, M. A., B. Reizis, A. C. Melton, E. Masteller, Q. Tang, J. M. Proctor, Y. Wang, X. Bernstein, X. Huang, L. F. Reichardt, J. A. Bluestone, and D. Sheppard. 2007. Loss of integrin alpha(v)beta8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449: 361-365. https://doi.org/10.1038/nature06110
  75. Pulendran, B., and D. Artis. 2012. New paradigms in type 2 immunity. Science 337: 431-435. https://doi.org/10.1126/science.1221064
  76. Tang, H., W. Cao, S. P. Kasturi, R. Ravindran, H. I. Nakaya, K. Kundu, N. Murthy, T. B. Kepler, B. Malissen, and B. Pulendran. 2010. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat. Immunol. 11: 608-617. https://doi.org/10.1038/ni.1883
  77. Pletinckx, K., B. Stijlemans, V. Pavlovic, R. Laube, C. Brandl, S. Kneitz, A. Beschin, B. P. De, and M. B. Lutz. 2011. Similar inflammatory DC maturation signatures induced by TNF or Trypanosoma brucei antigens instruct default Th2-cell responses. Eur. J. Immunol. 41: 3479-3494. https://doi.org/10.1002/eji.201141631
  78. De, S. T., M. M. Van, B. G. De, J. Urbain, O. Leo, and M. Moser. 1997. Effect of interleukin-10 on dendritic cell maturation and function. Eur. J. Immunol. 27: 1229-1235. https://doi.org/10.1002/eji.1830270526
  79. Raker, V. K., M. P. Domogalla, and K. Steinbrink. 2015. Tolerogenic dendritic cells for regulatory T cell induction in man. Front. Immunol. 6: 569.
  80. Amodio, G., and S. Gregori. 2012. Human tolerogenic DC-10: perspectives for clinical applications. Transplant. Res. 1: 14.
  81. Maldonado-Lopez, R., C. Maliszewski, J. Urbain, and M. Moser. 2001. Cytokines regulate the capacity of CD8alpha(+) and CD8alpha(-) dendritic cells to prime Th1/Th2 cells in vivo. J. Immunol. 167: 4345-4350. https://doi.org/10.4049/jimmunol.167.8.4345
  82. Perona-Wright, G., S. J. Jenkins, A. Crawford, D. Gray, E. J. Pearce, and A. S. MacDonald. 2006. Distinct sources and targets of IL-10 during dendritic cell-driven Th1 and Th2 responses in vivo. Eur. J. Immunol. 36: 2367-2375. https://doi.org/10.1002/eji.200535722
  83. Redpath, S. A., W. N. van der, A. M. Cervera, A. S. MacDonald, D. Gray, R. M. Maizels, and M. D. Taylor. 2013. ICOS controls Foxp3(+) regulatory T-cell expansion, maintenance and IL-10 production during helminth infection. Eur. J. Immunol. 43: 705-715. https://doi.org/10.1002/eji.201242794
  84. Nono, J. K., K. Pletinckx, M. B. Lutz, and K. Brehm. 2012. Excretory/secretory-products of Echinococcus multilocularis larvae induce apoptosis and tolerogenic properties in dendritic cells in vitro. PLoS Negl. Trop. Dis. 6: e1516.
  85. Casaravilla, C., A. Pittini, D. Ruckerl, P. I. Seoane, S. J. Jenkins, A. S. MacDonald, A. M. Ferreira, J. E. Allen, and A. Diaz. 2014. Unconventional maturation of dendritic cells induced by particles from the laminated layer of larval Echinococcus granulosus. Infect. Immun. 82: 3164-3176. https://doi.org/10.1128/IAI.01959-14
  86. Hochrein, H., M. O'Keeffe, T. Luft, S. Vandenabeele, R. J. Grumont, E. Maraskovsky, and K. Shortman. 2000. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J. Exp. Med. 192: 823-833. https://doi.org/10.1084/jem.192.6.823
  87. Lutz, M. B., M. Schnare, M. Menges, S. Rossner, M. Rollinghoff, G. Schuler, and A. Gessner. 2002. Differential functions of IL-4 receptor types I and II for dendritic cell maturation and IL-12 production and their dependency on GM-CSF. J. Immunol. 169: 3574-3580. https://doi.org/10.4049/jimmunol.169.7.3574
  88. Freeman, B. E., E. Hammarlund, H. P. Raue, and M. K. Slifka. 2012. Regulation of innate CD8+ T-cell activation mediated by cytokines. Proc. Natl. Acad. Sci. U. S. A. 109: 9971-9976. https://doi.org/10.1073/pnas.1203543109
  89. Mescher, M. F., J. M. Curtsinger, P. Agarwal, K. A. Casey, M. Gerner, C. D. Hammerbeck, F. Popescu, and Z. Xiao. 2006. Signals required for programming effector and memory development by CD8+ T cells. Immunol. Rev. 211: 81-92. https://doi.org/10.1111/j.0105-2896.2006.00382.x
  90. Curtsinger, J. M., M. Y. Gerner, D. C. Lins, and M. F. Mescher. 2007. Signal 3 availability limits the CD8 T cell response to a solid tumor. J. Immunol. 178: 6752-6760. https://doi.org/10.4049/jimmunol.178.11.6752
  91. Heufler, C., F. Koch, U. Stanzl, G. Topar, M. Wysocka, G. Trinchieri, A. Enk, R. M. Steinman, N. Romani, and G. Schuler. 1996. Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur. J. Immunol. 26: 659-668. https://doi.org/10.1002/eji.1830260323
  92. Cella, M., D. Scheidegger, K. Palmer-Lehmann, P. Lane, A. Lanzavecchia, and G. Alber. 1996. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184: 747-752. https://doi.org/10.1084/jem.184.2.747
  93. Steinman, R. M., and H. Hemmi. 2006. Dendritic cells: translating innate to adaptive immunity. Curr. Top. Microbiol. Immunol. 311: 17-58.
  94. Trinchieri, G. 2003. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3: 133-146. https://doi.org/10.1038/nri1001
  95. Napolitani, G., A. Rinaldi, F. Bertoni, F. Sallusto, and A. Lanzavecchia. 2005. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6: 769-776. https://doi.org/10.1038/ni1223
  96. Theiner, G., S. Rossner, A. Dalpke, K. Bode, T. Berger, A. Gessner, and M. B. Lutz. 2008. TLR9 cooperates with TLR4 to increase IL-12 release by murine dendritic cells. Mol. Immunol. 45: 244-252. https://doi.org/10.1016/j.molimm.2007.02.021
  97. Muller, U., G. Kohler, H. Mossmann, G. A. Schaub, G. Alber, J. P. Di Santo, F. Brombacher, and C. Holscher. 2001. IL-12-independent IFN-gamma production by T cells in experimental Chagas' disease is mediated by IL-18. J. Immunol. 167: 3346-3353. https://doi.org/10.4049/jimmunol.167.6.3346
  98. Longhi, M. P., C. Trumpfheller, J. Idoyaga, M. Caskey, I. Matos, C. Kluger, A. M. Salazar, M. Colonna, and R. M. Steinman. 2009. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J. Exp. Med. 206: 1589-1602. https://doi.org/10.1084/jem.20090247
  99. Soares, H., H. Waechter, N. Glaichenhaus, E. Mougneau, H. Yagita, O. Mizenina, D. Dudziak, M. C. Nussenzweig, and R. M. Steinman. 2007. A subset of dendritic cells induces CD4+ T cells to produce IFN-gamma by an IL-12-independent but CD70-dependent mechanism in vivo. J. Exp. Med. 204: 1095-1106. https://doi.org/10.1084/jem.20070176
  100. de, J. R., F. Altare, I. A. Haagen, D. G. Elferink, T. Boer, B. van, V, P. J. Kabel, J. M. Draaisma, J. T. van Dissel, F. P. Kroon, J. L. Casanova, and T. H. Ottenhoff. 1998. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280: 1435-1438. https://doi.org/10.1126/science.280.5368.1435
  101. Kalinski, P., C. M. Hilkens, A. Snijders, F. G. Snijdewint, and M. L. Kapsenberg. 1997. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human naive T helper cells. J. Immunol. 159: 28-35. https://doi.org/10.4049/jimmunol.159.1.28
  102. Theiner, G., A. Gessner, and M. B. Lutz. 2006. The mast cell mediator PGD2 suppresses IL-12 release by dendritic cells leading to Th2 polarized immune responses in vivo. Immunobiology 211: 463-472. https://doi.org/10.1016/j.imbio.2006.05.020
  103. Mattner, F., P. K. Di, and G. Alber. 1997. Interleukin-12 is indispensable for protective immunity against Leishmania major. Infect. Immun. 65: 4378-4383. https://doi.org/10.1128/iai.65.11.4378-4383.1997
  104. Schijns, V. E., B. L. Haagmans, C. M. Wierda, B. Kruithof, I. A. Heijnen, G. Alber, and M. C. Horzinek. 1998. Mice lacking IL-12 develop polarized Th1 cells during viral infection. J. Immunol. 160: 3958-3964. https://doi.org/10.4049/jimmunol.160.8.3958
  105. Berberich, C., J. R. Ramirez-Pineda, C. Hambrecht, G. Alber, Y. A. Skeiky, and H. Moll. 2003. Dendritic cell (DC)-based protection against an intracellular pathogen is dependent upon DC-derived IL-12 and can be induced by molecularly defined antigens. J. Immunol. 170: 3171-3179. https://doi.org/10.4049/jimmunol.170.6.3171
  106. Ramirez-Pineda, J. R., A. Frohlich, C. Berberich, and H. Moll. 2004. Dendritic cells (DC) activated by CpG DNA ex vivo are potent inducers of host resistance to an intracellular pathogen that is independent of IL-12 derived from the immunizing DC. J. Immunol. 172: 6281-6289. https://doi.org/10.4049/jimmunol.172.10.6281
  107. Voigtlander, C., S. Rossner, E. Cierpka, G. Theiner, C. Wiethe, M. Menges, G. Schuler, and M. B. Lutz. 2006. Dendritic cells matured with TNF can be further activated in vitro and after subcutaneous injection in vivo which converts their tolerogenicity into immunogenicity. J. Immunother. 29: 407-415. https://doi.org/10.1097/01.cji.0000210081.60178.b4
  108. Itano, A. A., S. J. McSorley, R. L. Reinhardt, B. D. Ehst, E. Ingulli, A. Y. Rudensky, and M. K. Jenkins. 2003. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19: 47-57. https://doi.org/10.1016/S1074-7613(03)00175-4
  109. Reis e Sousa, S. Hieny, T. Scharton-Kersten, D. Jankovic, H. Charest, R. N. Germain, and A. Sher. 1997. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186: 1819-1829. https://doi.org/10.1084/jem.186.11.1819
  110. Abdi, K., N. Singh, and P. Matzinger. 2006. T-cell control of IL-12p75 production. Scand. J. Immunol. 64: 83-92. https://doi.org/10.1111/j.1365-3083.2006.01767.x
  111. Goldszmid, R. S., P. Caspar, A. Rivollier, S. White, A. Dzutsev, S. Hieny, B. Kelsall, G. Trinchieri, and A. Sher. 2012. NK cell-derived interferon-gamma orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 36: 1047-1059. https://doi.org/10.1016/j.immuni.2012.03.026
  112. Moretta, L., G. Ferlazzo, C. Bottino, M. Vitale, D. Pende, M. C. Mingari, and A. Moretta. 2006. Effector and regulatory events during natural killer-dendritic cell interactions. Immunol. Rev. 214: 219-228. https://doi.org/10.1111/j.1600-065X.2006.00450.x
  113. Bajenoff, M., B. Breart, A. Y. Huang, H. Qi, J. Cazareth, V. M. Braud, R. N. Germain, and N. Glaichenhaus. 2006. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med. 203: 619-631. https://doi.org/10.1084/jem.20051474
  114. Martin-Fontecha, A., L. L. Thomsen, S. Brett, C. Gerard, M. Lipp, A. Lanzavecchia, and F. Sallusto. 2004. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat. Immunol. 5: 1260-1265. https://doi.org/10.1038/ni1138
  115. Oestreich, K. J., and A. S. Weinmann. 2012. Transcriptional mechanisms that regulate T helper 1 cell differentiation. Curr. Opin. Immunol. 24: 191-195. https://doi.org/10.1016/j.coi.2011.12.004
  116. Reinhardt, R. L., S. Hong, S. J. Kang, Z. E. Wang, and R. M. Locksley. 2006. Visualization of IL-12/23p40 in vivo reveals immunostimulatory dendritic cell migrants that promote Th1 differentiation. J. Immunol. 177: 1618-1627. https://doi.org/10.4049/jimmunol.177.3.1618
  117. Sallusto, F., B. Palermo, D. Lenig, M. Miettinen, S. Matikainen, I. Julkunen, R. Forster, R. Burgstahler, M. Lipp, and A. Lanzavecchia. 1999. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29: 1617-1625. https://doi.org/10.1002/(SICI)1521-4141(199905)29:05<1617::AID-IMMU1617>3.0.CO;2-3
  118. Ingulli, E., A. Mondino, A. Khoruts, and M. K. Jenkins. 1997. In vivo detection of dendritic cell antigen presentation to CD4(+) T cells. J. Exp. Med. 185: 2133-2141. https://doi.org/10.1084/jem.185.12.2133
  119. Langenkamp, A., M. Messi, A. Lanzavecchia, and F. Sallusto. 2000. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat. Immunol. 1: 311-316. https://doi.org/10.1038/79758
  120. Pulecio, J., J. Petrovic, F. Prete, G. Chiaruttini, A. M. LennonDumenil, C. Desdouets, S. Gasman, O. R. Burrone, and F. Benvenuti. 2010. Cdc42-mediated MTOC polarization in dendritic cells controls targeted delivery of cytokines at the immune synapse. J. Exp. Med. 207: 2719-2732. https://doi.org/10.1084/jem.20100007
  121. Luft, T., M. Jefford, P. Luetjens, T. Toy, H. Hochrein, K. A. Masterman, C. Maliszewski, K. Shortman, J. Cebon, and E. Maraskovsky. 2002. Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E(2) regulates the migratory capacity of specific DC subsets. Blood 100: 1362-1372. https://doi.org/10.1182/blood-2001-12-0360
  122. Knippertz, I., A. Hesse, T. Schunder, E. Kampgen, M. K. Brenner, G. Schuler, A. Steinkasserer, and D. M. Nettelbeck. 2009. Generation of human dendritic cells that simultaneously secrete IL-12 and have migratory capacity by adenoviral gene transfer of hCD40L in combination with IFN-gamma. J. Immunother. 32: 524-538. https://doi.org/10.1097/CJI.0b013e3181a28422
  123. Dorrie, J., N. Schaft, I. Muller, V. Wellner, T. Schunder, J. Hanig, G. J. Oostingh, M. P. Schon, C. Robert, E. Kampgen, and G. Schuler. 2008. Introduction of functional chimeric E/L-selectin by RNA electroporation to target dendritic cells from blood to lymph nodes. Cancer Immunol. Immunother. 57: 467-477. https://doi.org/10.1007/s00262-007-0385-1
  124. Schulz, E. G., L. Mariani, A. Radbruch, and T. Hofer. 2009. Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity 30: 673-683. https://doi.org/10.1016/j.immuni.2009.03.013
  125. Elloso, M. M., and P. Scott. 2001. Differential requirement of CD28 for IL-12 receptor expression and function in CD4(+) and CD8(+) T cells. Eur. J. Immunol. 31: 384-395. https://doi.org/10.1002/1521-4141(200102)31:2<384::AID-IMMU384>3.0.CO;2-9
  126. Ahlers, J. D., I. M. Belyakov, S. Matsui, and J. A. Berzofsky. 2001. Signals delivered through TCR instruct IL-12 receptor (IL-12R) expression: IL-12 and tumor necrosis factor-alpha synergize for IL-12R expression at low antigen dose. Int. Immunol. 13: 1433-1442. https://doi.org/10.1093/intimm/13.11.1433
  127. Szabo, S. J., A. S. Dighe, U. Gubler, and K. M. Murphy. 1997. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185: 817-824. https://doi.org/10.1084/jem.185.5.817
  128. Rogge, L., L. Barberis-Maino, M. Biffi, N. Passini, D. H. Presky, U. Gubler, and F. Sinigaglia. 1997. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med. 185: 825-831. https://doi.org/10.1084/jem.185.5.825
  129. Sam, H., and M. M. Stevenson. 1999. In vivo IL-12 production and IL-12 receptors beta1 and beta2 mRNA expression in the spleen are differentially up-regulated in resistant B6 and susceptible A/J mice during early blood-stage Plasmodium chabaudi AS malaria. J. Immunol. 162: 1582-1589. https://doi.org/10.4049/jimmunol.162.3.1582
  130. Grohmann, U., M. L. Belladonna, R. Bianchi, C. Orabona, E. Ayroldi, M. C. Fioretti, and P. Puccetti. 1998. IL-12 acts directly on DC to promote nuclear localization of NF-kappaB and primes DC for IL-12 production. Immunity 9: 315-323. https://doi.org/10.1016/S1074-7613(00)80614-7
  131. Puccetti, P., M. L. Belladonna, and U. Grohmann. 2002. Effects of IL-12 and IL-23 on antigen-presenting cells at the interface between innate and adaptive immunity. Crit. Rev. Immunol. 22: 373-390.
  132. Laderach, D., A. Wesa, and A. Galy. 2003. 4-1BB-ligand is regulated on human dendritic cells and induces the production of IL-12. Cell. Immunol. 226: 37-44. https://doi.org/10.1016/j.cellimm.2003.11.003
  133. Futagawa, T., H. Akiba, T. Kodama, K. Takeda, Y. Hosoda, H. Yagita, and K. Okumura. 2002. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int. Immunol. 14: 275-286. https://doi.org/10.1093/intimm/14.3.275
  134. Wilcox, R. A., A. I. Chapoval, K. S. Gorski, M. Otsuji, T. Shin, D. B. Flies, K. Tamada, R. S. Mittler, H. Tsuchiya, D. M. Pardoll, and L. Chen. 2002. Cutting edge: Expression of functional CD137 receptor by dendritic cells. J. Immunol. 168: 4262-4267. https://doi.org/10.4049/jimmunol.168.9.4262
  135. Wyzgol, A., N. Muller, A. Fick, S. Munkel, G. U. Grigoleit, K. Pfizenmaier, and H. Wajant. 2009. Trimer stabilization, oligomerization, and antibody-mediated cell surface immobilization improve the activity of soluble trimers of CD27L, CD40L, 41BBL, and glucocorticoid-induced TNF receptor ligand. J. Immunol. 183: 1851-1861. https://doi.org/10.4049/jimmunol.0802597
  136. Sporri, R. and Reis e Sousa. 2005. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol. 6: 163-170. https://doi.org/10.1038/ni1162
  137. Wykes, M., A. Pombo, C. Jenkins, and G. G. MacPherson. 1998. Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. J. Immunol. 161: 1313-1319. https://doi.org/10.4049/jimmunol.161.3.1313
  138. Qi, H., J. G. Egen, A. Y. Huang, and R. N. Germain. 2006. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312: 1672-1676. https://doi.org/10.1126/science.1125703
  139. Chow, K. V., A. M. Lew, R. M. Sutherland, and Y. Zhan. 2016. Monocyte-derived dendritic cells promote Th polarization, whereas conventional dendritic cells promote Th proliferation. J. Immunol. 196: 624-636.