• 제목/요약/키워드: regular ring

검색결과 209건 처리시간 0.02초

Weakly Semicommutative Rings and Strongly Regular Rings

  • Wang, Long;Wei, Junchao
    • Kyungpook Mathematical Journal
    • /
    • 제54권1호
    • /
    • pp.65-72
    • /
    • 2014
  • A ring R is called weakly semicommutative ring if for any a, $b{\in}R^*$ = R\{0} with ab = 0, there exists $n{\geq}1$ such that either an $a^n{\neq}0$ and $a^nRb=0$ or $b^n{\neq}0$ and $aRb^n=0$. In this paper, many properties of weakly semicommutative rings are introduced, some known results are extended. Especially, we show that a ring R is a strongly regular ring if and only if R is a left SF-ring and weakly semicommutative ring.

MAXIMAL IDEALS IN POLYNOMIAL RINGS

  • Cho, Young-Hyun
    • 대한수학회보
    • /
    • 제22권2호
    • /
    • pp.117-119
    • /
    • 1985
  • Let R be a commutative noetherian ring with 1.neq.0, denoting by .nu.(I) the cardinality of a minimal basis of the ideal I. Let A be a polynomial ring in n>0 variables with coefficients in R, and let M be a maximal ideal of A. Generally it is shown that .nu.(M $A_{M}$).leq..nu.(M).leq..nu.(M $A_{M}$)+1. It is well known that the lower bound is not always satisfied, and the most classical examples occur in nonfactional Dedekind domains. But in many cases, (e.g., A is a polynomial ring whose coefficient ring is a field) the lower bound is attained. In [2] and [3], the conditions when the lower bound is satisfied is investigated. Especially in [3], it is shown that .nu.(M)=.nu.(M $A_{M}$) if M.cap.R=p is a maximal ideal or $A_{M}$ (equivalently $R_{p}$) is not regular or n>1. Hence the problem of determining whether .nu.(M)=.nu.(M $A_{M}$) can be studied when p is not maximal, $A_{M}$ is regular and n=1. The purpose of this note is to provide some conditions in which the lower bound is satisfied, when n=1 and R is a regular local ring (hence $A_{M}$ is regular)./ is regular).

  • PDF

MODULES WITH PRIME ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • 대한수학회지
    • /
    • 제38권5호
    • /
    • pp.987-1030
    • /
    • 2001
  • Some discrimination of modules whose endomorhism rings are prime is introduced, by means of structures of submodules inducing prime ideals of the endomorphism ring End(sub)R (M) of a left R-module (sub)RM over a ring R. Modules with non-prime endomorphism rings are contrapositively studied as well.

  • PDF

Some Properties of Regular Multiplication Rings

  • Lee, Dong-Soo;Lee, Hyun-Bok
    • 충청수학회지
    • /
    • 제4권1호
    • /
    • pp.99-102
    • /
    • 1991
  • Let R be a commutative ring with identity. A ring is said to be a regular multiplication ring if $A{\subseteq}B$, where A and B are ideals of R with B regular, implies that there exists an ideal C of R such that A = BC. We characterize such rings and study their properties.

  • PDF

ON NCI RINGS

  • Hwang, Seo-Un;Jeon, Young-Cheol;Park, Kwang-Sug
    • 대한수학회보
    • /
    • 제44권2호
    • /
    • pp.215-223
    • /
    • 2007
  • We in this note introduce the concept of NCI rings which is a generalization of NI rings. We study the basic structure of NCI rings, concentrating rings of bounded index of nilpotency and von Neumann regular rings. We also construct suitable examples to the situations raised naturally in the process.

On Left SF-Rings and Strongly Regular Rings

  • Subedi, Tikaram;Buhphang, Ardeline Mary
    • Kyungpook Mathematical Journal
    • /
    • 제56권3호
    • /
    • pp.861-866
    • /
    • 2016
  • A ring R called left SF if its simple left modules are at. Regular rings are known to be left SF-rings. However, till date it is unknown whether a left SF-ring is necessarily regular. In this paper, we prove the strong regularity of left (right) complement bounded left SF-rings. We also prove the strong regularity of a class of generalized semi-commutative left SF-rings.

REGULARITY AND SEMIPOTENCY OF HOM

  • Hakmi, Hamza
    • Korean Journal of Mathematics
    • /
    • 제22권1호
    • /
    • pp.151-167
    • /
    • 2014
  • Let M, N be modules over a ring R and $[M,N]=Hom_R(M,N)$. The concern is study of: (1) Some fundamental properties of [M, N] when [M, N] is regular or semipotent. (2) The substructures of [M, N] such as radical, the singular and co-singular ideals, the total and others has raised new questions for research in this area. New results obtained include necessary and sufficient conditions for [M, N] to be regular or semipotent. New substructures of [M, N] are studied and its relationship with the Tot of [M, N]. In this paper we show that, the endomorphism ring of a module M is regular if and only if the module M is semi-injective (projective) and the kernel (image) of every endomorphism is a direct summand.

RINGS WITH A FINITE NUMBER OF ORBITS UNDER THE REGULAR ACTION

  • Han, Juncheol;Park, Sangwon
    • 대한수학회지
    • /
    • 제51권4호
    • /
    • pp.655-663
    • /
    • 2014
  • Let R be a ring with identity, X(R) the set of all nonzero, non-units of R and G(R) the group of all units of R. We show that for a matrix ring $M_n(D)$, $n{\geq}2$, if a, b are singular matrices of the same rank, then ${\mid}o_{\ell}(a){\mid}={\mid}o_{\ell}(b){\mid}$, where $o_{\ell}(a)$ and $o_{\ell}(b)$ are the orbits of a and b, respectively, under the left regular action. We also show that for a semisimple Artinian ring R such that $X(R){\neq}{\emptyset}$, $$R{{\sim_=}}{\oplus}^m_{i=1}M_n_i(D_i)$$, with $D_i$ infinite division rings of the same cardinalities or R is isomorphic to the ring of $2{\times}2$ matrices over a finite field if and only if ${\mid}o_{\ell}(x){\mid}={\mid}o_{\ell}(y){\mid}$ for all $x,y{\in}X(R)$.

GROUP ACTIONS IN A REGULAR RING

  • HAN, Jun-Cheol
    • 대한수학회보
    • /
    • 제42권4호
    • /
    • pp.807-815
    • /
    • 2005
  • Let R be a ring with identity, X the set of all nonzero, nonunits of Rand G the group of all units of R. We will consider two group actions on X by G, the regular action and the conjugate action. In this paper, by investigating two group actions we can have some results as follows: First, if G is a finitely generated abelian group, then the orbit O(x) under the regular action on X by G is finite for all nilpotents x $\in$ X. Secondly, if F is a field in which 2 is a unit and F $\backslash\;\{0\}$ is a finitley generated abelian group, then F is finite. Finally, if G in a unit-regular ring R is a torsion group and 2 is a unit in R, then the conjugate action on X by G is trivial if and only if G is abelian if and only if R is commutative.