DOI QR코드

DOI QR Code

ON NCI RINGS

  • Published : 2007.05.31

Abstract

We in this note introduce the concept of NCI rings which is a generalization of NI rings. We study the basic structure of NCI rings, concentrating rings of bounded index of nilpotency and von Neumann regular rings. We also construct suitable examples to the situations raised naturally in the process.

Keywords

References

  1. E. P. Armendariz, H. K. Koo, and J. K. Park, Isomorphic Ore extensions, Comm. Algebra 15 (1987), no. 12, 2633-2652 https://doi.org/10.1080/00927878708823556
  2. G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Proc. Biennial Ohio State-Denison Conference 1992, edited by S. K. Jain and S. T. Rizvi, World Scientific, Singapore-New Jersey-London-Hong Kong (1993), 102-129
  3. G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra 115 (1997), no. 3, 213-230 https://doi.org/10.1016/S0022-4049(96)00011-4
  4. A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Pitman Advanced Publishing Program, 1980
  5. K. R. Goodearl, von Neumann Regular Rings, Pitman, London, 1979
  6. K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989
  7. R. Gordon and J. C. Robson, Krull dimension, Memoirs Amer. Math. Soc. 133, 1973
  8. I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago-London, 1969
  9. Y. Hirano, D. van Huynh, and J. K. Park, On rings whose prime radical contains all nilpotent elements of index two, Arch. Math. 66 (1996), no. 5, 360-365 https://doi.org/10.1007/BF01781553
  10. C. Y. Hong, N. K. Kim, T. K. Kwak, and Y. Lee, On weak ${\pi}-regularity$ of rings whose prime ideals are maximal, J. Pure Appl. Algebra 146 (2000), no. 1, 35-44 https://doi.org/10.1016/S0022-4049(98)00177-7
  11. S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra to appear
  12. N. K. Kim, Y. Lee, and S. J. Ryu, An ascending chain condition on Wedderburn radicals, Comm. Algebra 34 (2006), no. 1, 37-50 https://doi.org/10.1080/00927870500345901
  13. A. A. Klein, Rings of bounded index, Comm. Algebra 12 (1984), no. 1-2, 9-21 https://doi.org/10.1080/00927878408822986
  14. C. Lanski, Nil subrings of Goldie rings are nilpotent, Canad. J. Math. 21 (1969), 904-907 https://doi.org/10.4153/CJM-1969-098-x
  15. T. H. Lenagan, Nil ideals in rings with finite Krull dimension, J. Algebra 29 (1974), 77-87 https://doi.org/10.1016/0021-8693(74)90112-4
  16. G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123 https://doi.org/10.1081/AGB-100002173
  17. G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494-520 https://doi.org/10.1016/S0021-8693(03)00301-6
  18. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., 1987
  19. L. H. Rowen, Ring Theory, Academic Press, Inc., San Diego, 1991
  20. A. Smoktunowicz, Polynomial rings over nil rings need not be nil, J. Algebra 233 (2000), no. 2, 427-436 https://doi.org/10.1006/jabr.2000.8451

Cited by

  1. On Rings with Weakly Prime Centers vol.66, pp.12, 2015, https://doi.org/10.1007/s11253-015-1053-9
  2. Rings whose nilpotent elements form a Lie ideal vol.51, pp.2, 2014, https://doi.org/10.1556/SScMath.51.2014.2.1279
  3. Some notes on JTTC rings vol.139, pp.2, 2015, https://doi.org/10.1016/j.bulsci.2014.08.006
  4. Weakly Semicommutative Rings and Strongly Regular Rings vol.54, pp.1, 2014, https://doi.org/10.5666/KMJ.2014.54.1.65
  5. On Commutativity of Semiprime Right Goldie C<i><sub>k</sub></i>-Rings vol.02, pp.04, 2012, https://doi.org/10.4236/apm.2012.24031
  6. WPZI RINGS AND STRONG REGULARITY vol.0, pp.0, 2014, https://doi.org/10.2478/aicu-2014-0054
  7. NC-Rings and Some Commutativity Conditions vol.09, pp.02, 2019, https://doi.org/10.4236/apm.2019.92008