Some Properties of Regular Multiplication Rings

Dong-Soo Lee and Hyun-Bok Lee

Abstract

Let R be a commutative ring with identity. A ring is said to be a regular multiplication ring if $A \subseteq B$, where A and B are ideals of R with B regular, implies that there exists an ideal C of R such that $A=B C$. We characterize such rings and study their properties.

1. Introduction

Throughout this paper, all rings will be commutative with identities and R will always denote a ring. An element of R which is not a zerodivisor is called regular and an ideal of R is called a regular ideal if it contains a regular element. A ring R is called a regular multiplication ring if $A \subseteq B$, where A and B are ideals of R with B regular implies that there exists an ideal C of R such that $A=B C$. A ring R is called prüfer ring if every finitely generated regular ideal of R is invertible.

The purpose of this paper is to give some characterizations of regular multiplication ring involving their regular ideals. A regular multiplication ring is a generalization of Dedekind domain, ZPI ring and multiplication.

A prüfer ring is a generalization of a regular multiplication ring. It is well known that a ring R is a regular multiplication ring if and only if every regular ideal of R is a unique product of powers of finitely many maximal ideals of $R[4$, theorem 17].

We also note that every regular prime ideal of a regular multiplication ring is maximal. In general, our terminology and notation from ring theory will follow that of Gilmer [3] and Larsen and McCarthy [5].

[^0]
2. Main Results

Lemma 1. A ring R is a regular multiplication ring if and only if every regular ideal is invertible.

Proof: Let B be a regular ideal of R. Then there is a regular element $b \in B$ and $(b) \subseteq B$. Since R is a regular multiplication ring, there is an ideal A of \bar{R} such that $(b)=A B$. So B is a factor of a regular principal ideal, hence B is invertible.

Conversely, assume that every regular ideal is invertible. Let A and B be ideals of R with B regular and with $A \subseteq B$. There is an ideal C such that $B C=R$ by hypothesis. If $D=A C$, then $D \subseteq R$ and $B D=B A C=A B C=A R=A$. Therefore, R is a regular multiplication ring.

Proposition 2. Let R be a regular multiplication ring. If P is a regular prime ideal of R, then there are no ideals of R strictly between P and P^{2}.

Proof: Let P be a regular prime ideal of R such that $P^{2} \subseteq A \subseteq P$. Then there are ideals C, D of R such that $A=P C$ and $P^{2}=A D=$ $P C D$. Since P is invertible, $P=C D$, so $C \subseteq P$ or $D \subseteq P$. If $C \subseteq P$, then $A=P C \subseteq P^{2}$, hence $P^{2}=A$. If $D \subseteq P$, then $P^{2}=A D \subseteq A P$ and $P \subseteq A$, hence $P=A$. Therefore $P^{2} \subseteq A \subseteq P$ implies $A=P^{2}$ or $A=P$.

A ring R is called a special primary ring if R has a unique maximal ideal M and if each proper ideal of R is a power of M. By Proposition 2, we obtain the following corollary.

Corollary 3. If R is a regular multiplication ring and P is a regular prime ideal, then for each positive integer $n, R / P^{n}$ is a special primary ring,

Theorem 4. A ring R is a regular multiplication ring if and only if localization R_{P} of R at prime ideal P is a regular multiplication ring for every maximal ideal P of R.

Proof: Let A^{\prime} and B^{\prime} be ideals of R_{p} such that $A^{\prime} \subset B^{\prime}$ with B^{\prime} a regular ideal of $R_{P}, S=R \backslash P$. Then $A^{\prime}=S^{-1}\left(A^{\prime} \cap R\right), B^{\prime}=$ $S^{-1}\left(B^{\prime} \cap R\right)$, and so $S^{-1}\left(A^{\prime} \cap R\right) \subseteq S^{-1}\left(B^{\prime} \cap R\right)$ implies $A^{\prime} \cap R \subseteq$ $B^{\prime} \cap R$. Since B^{\prime} is a regular ideal of $R_{p}, B^{\prime} \cap R$ is a regular ideal
of R. There is an ideal C of R such that $\left(B^{\prime} \cap R\right) C=A^{\prime} \cap R$, so $S^{-1}\left\{\left(B^{\prime} \cap R\right) C\right\}=S^{-1}\left(B^{\prime} \cap R\right) S^{-1} C=S^{-1}\left(A^{\prime} \cap R\right)$ and $A^{\prime}=B^{\prime} C^{\prime}$, where $C^{\prime}=S^{-1} C$. Hence R_{p} is a regular multiplication ring for every maximal ideal P of R.

Conversely, suppose R_{p} is a regular multiplication ring for every maximal ideal P of R. Let A, B be ideals of R with $A \subseteq B, B$ regular. Since B is a regular ideal of $R, B R_{P}$ is a regular ideal of R_{p}. Since $A R_{P} \subseteq B R_{p}$, there is an ideal $C R_{p}$ of R_{p} such that $A R_{p}=$ $B R_{p} C R_{p}=(B C) R_{p}$ for every maximal ideal P of R, and so $A=B C$ Hence R is a regular multiplication ring.

Lemma 5. Let R be a prüfer ring and let T be an overring of R. If M is a maximal ideal of T, then $T_{M}=R_{N}$, where $N=M \cap R$.

Proof: Exercise X-15 [5, P. 249].
Corollary 6. Every overring of a regular multiplication ring is a regular multiplication ring.

Proof: Let R be a regular multiplication ring and T an overring of R such that $R \subset T \subset K$, where K is a total quotient ring of R. Let M be a maximal ideal of T. Since a regular multiplication ring is a prüfer, R is a prüfer ring. By Lemma $5, T_{M}=R_{M \cap R}$. Thus $R_{M \cap R}$ is not a field, and so $M \cap R \neq 0$. Hence $M \cap R$ is a maximal ideal of R. Since R is a regular multiplication ring, $R_{M \cap R}$ is a regular multiplication ring.

Proposition 7. If a ring R is a quasi-local regular multiplication ring, then the set of regular ideals of R is totally ordered by inclusion.

Proof: Since every regular ideal is a power of only maximal ideal of R, the set of regular ideals of R is totally ordered by inclusion.

Theorem 8. Let $\left\{R_{i} \mid i=1, \ldots, n\right\}$ be a finite collection of rings with identities and let $R=R_{1} \oplus \cdots \oplus R_{n}$ be the direct sum of these rings. Then R is a regular multiplication ring if and only if each R_{i} is a regular multiplication.

Proof: Let A_{i} be a regular ideal of $R_{i}, 1 \leq i \leq n$. Then $R_{1} \oplus$ $\cdots \oplus R_{i-1} \oplus A_{i} \oplus R_{i+1} \oplus \cdots \oplus R_{n}$ is a regular ideal of R. Since R is a regular multiplication ring. $R_{1} \oplus \cdots \oplus R_{i-1} \oplus A_{i} \oplus R_{i+1} \oplus \cdots \oplus R_{n}=$ $M_{1}^{v_{1}} \cdots M_{m}^{v_{m}}$, where M_{1}, \ldots, M_{m} are maximal ideals of R, M_{k} can
be written $M_{k}=R_{1} \oplus \cdots \oplus B_{j k} \oplus \cdots \oplus R_{n}$ for some maximal ideal $B_{j k}$ of R_{j}. Since $R_{1} \oplus \cdots \oplus R_{i-1} \oplus A_{i} \oplus R_{i+1} \oplus \cdots \oplus R_{n} \subseteq M_{k}$ for each k, then $i=j k$, for each k. Therefore we may assume that $M_{k}=R_{1} \oplus \cdots \oplus R_{i-1} \oplus B_{k} \oplus R_{i+1} \oplus \cdots \oplus R_{n}$ for each k, where B_{k} is a maximal ideal of R_{i}. Then

$$
\begin{aligned}
M_{k}^{v_{k}} & =R_{1} \oplus \cdots \oplus R_{i-1} \oplus B_{k}^{v_{k}} \oplus R_{i+1} \oplus \cdots \oplus R_{n}, \\
M_{1}^{v_{1}} \cdots M_{m}^{v_{m}} & =R_{1} \oplus \cdots \oplus B_{1}^{v_{1}} \cdots B_{m}^{v_{m}} \oplus \cdots \oplus R_{n} .
\end{aligned}
$$

Hence $A_{i}=B_{1}^{v_{1}} \cdots B_{m}^{v_{m}}$, where B_{j} is a maximal ideal of R_{i} for $1 \leq$ $j \leq m$. Therefore, R_{i} is a regular multiplication ring.

Conversely, suppose each R_{i} is a regular multiplication ring. Let A be a regular ideal of R. Then A can be written uniquely in the form $A=A_{1} \oplus \cdots \oplus A_{n}$. where A_{i} is a unique product of powers of finitely many maximal ideals of R_{i} for $1 \leq i \leq n$ i.e., $A_{i}=M_{i 1}^{v_{i 1}} \cdots M_{i k}^{v_{i k}}$, where $M_{i 1}, \ldots, M_{i k}$ are miximal ideals of R_{i} and $v_{i 1}, \ldots, v_{i k}$ are positive integers. Moreover $P_{i j}=R_{1} \oplus \cdots \oplus R_{i-1} \oplus M_{i j} \oplus R_{i+1} \oplus \cdots \oplus R_{n}$ is a maximal ideal of R for $1 \leq i \leq n, 1 \leq j \leq k$. Hence A is a product of powers of finitely many maximal ideals of R. Therefore, R is a regular multiplication ring.

References

[1] D.D Anderson and J. Pascual, Characterizing prüfer rings via their regular ideals, Comm. Algebra 15 (1987), 1287-1295.
[2] V. Erdōgdu, Regular multiplication rings, J. Pure Appl. Algebra 59 (1989), 55-59.
[3] R. Gilmer, "Multiplicative Ideal Theory," Dekker, New York, 1972.
[4] M. Griffin, Prüfer reng with zero divisors, J. Reine Angwe Math 239/240 (1969), 55-67.
[5] M. Larsen and P. McCarthy, "Multiplicative Theory of Ideals," Academic Press, New York, 1971.

[^0]: Received by the editors on 24 June 1991.
 1980 Mathematics subject classifications: Primary 13A.

