East Asian Math. J.
Vol. 33 (2017), No. 1, pp. 075-081
http://dx.doi.org/10.7858/eamj.2017.008

REDUCED MODULES AND STRONGLY REGULAR RINGS

Chan $\mathrm{Huh}^{*}{ }^{\dagger}$, Jeoung Soo Cheon, and Du Won Kim

Abstract

It is a well-known fact that a ring R is regular if and only if every left R-modules is flat. In this article we prove that a ring R is strongly regular if and only if every left R-modules is reduced if and only if every left- R modules is quasi-reduced.

1. Introduction

Throughout all rings are associative with identity and all modules are unitary. Let R be a ring. Note that an element $a \in R$ is nilpotent if $a^{n}=0$ for some $n \geq 1$, and R is reduced if R has no nonzero nilpotent elements. R is semicommutative if for $a, b \in R, a b=0$ implies that $a R b=0$, and R is abelian if every idempotent $e=e^{2} \in R$ is central. It is not difficult to show that reduced rings are semicommutative and semicommutative rings are abelian. It can be also proved that a ring R is semicommutative if and only if $l(x)=\{a \in R \mid a x=0\}$ is a two-sided ideal if and only if $r(x)=\{a \in R \mid x a=0\}$ is a two-sided ideal for any $x \in R$. A ring R is left duo if every left ideal of R is two-sided. Right duo ring is defined analogously. Clearly left or right duo rings are semicommutative.

Many properties of rings can be extended to modules. Due to Zhang [5] and Buhpang et al. [2], a left module ${ }_{R} M$ is reduced if $a x=0$ implies that $a M \cap R x=(0)$ for $a \in R, x \in M . M$ is semicommutative if $a x=0$ implies $a R x=(0)$, and M is abelian if $(e a) x=(a e) x$ for any $a, e \in R$ with $e=e^{2}$ and $x \in M$.

Now we introduce a generalization of reducedness for modules. A module ${ }_{R} M$ is said to be quasi-reduced(briefly q-reduced) if $a^{n} x=0(a \in R, x \in M, n \geq 1)$ implies $a x=0$. Note that ${ }_{R} M$ is q-reduced if and only if $a x=0$ whenever $a^{2} x=0$ for $a \in R, x \in M$.

For modules we have the following.

Received November 7, 2016; Accepted January 20, 2017.
2010 Mathematics Subject Classification. Primary 16D, 16S, 16W.
Key words and phrases. Reduced rings and modules, Regular and strongly regular rings.
\dagger This work was supported by a 2-year Research Grant of Pusan National University.

* Corresponding author.

Proposition 1.1. A module ${ }_{R} M$ is semicommutative if and only if $l_{R}(x)$ is a two sided ideal of R for each $x \in M$, where $l_{R}(x)=\{r \in R \mid r x=0\}$.

Lemma 1.2. Let R be a ring and M a left R-Module. Then
(1) If M is reduced, then it is both q-reduced and semicommutative.
(2) If M is q-reduced or semicommutative, then it is abelian.

Proof. (1) Suppose M is a reduced module. If $a^{2} x=0$ for $a \in R, x \in M$, then $a(a x)=a^{2} x=0$. This means that $R(a x) \cap a M=(0)$. Since $a x \in$ $R(a x) \cap a M$, we have $a x=0$. Thus M is q-reduced. Now $a x=0$ implies that arx $\in R x \cap a M=(0)$ for all $r \in R$. Thus, $a R x=(0)$, this proves that M is semicommutative.
(2) Let $e=e^{2} \in R$. Suppose M is q-reduced. Since $(e r e-e r)^{2}=(e r e-r e)^{2}=0$ for all $r \in R$, we get $(e r e-e r) x=(e r e-r e) x=0$ for any $x \in M$. Thus $(r e) x=(e r e) x=(e r) x$. Now if M is semicommutative, then $\operatorname{er}(1-e) x=$ $(1-e) r e x=0$ for all $e=e^{2}, r \in R$ and $x \in M$, since $e(1-e)=(1-e) e=0$. Thus, $(r e) x=(e r e) x=(e r) x$ for all $r \in R$ and $x \in M$.

Theorem 1.3. A left module M over a ring R is reduced if and only if it is both q-reduced and semicommutative.

Proof. The only if part is given by Lemma 1.2(1). Suppose that ${ }_{R} M$ is q reduced and semicommutative. If $a x=0$ with $a \in R, x \in M$ and $y \in R x \cap a M$, then $y=b x=a z$ for some $b \in R$ and $z \in M$. Since M is semicommutative, and $a x=0$, we get $a y=a b x=0$, hence $a^{2} z=a y=0$. This implies that $y=a z=0$ since M is q-reduced. Therefore $R x \cap a M=(0)$.

The concepts of semicommutativity and quasi-reducedness are independent.
Example 1.4. Let F be a field and $R=\frac{F[x]}{\left(x^{2}\right)}$, where $\left(x^{2}\right)$ is the ideal generated by $x^{2} \in F[x]$. Then R is commutative, hence semicommutative. The left regular module ${ }_{R} R$ is a semicommutative which is not q-reduced, because $\bar{x}^{2} \overline{1}=\bar{x}^{2}=0$ but $\bar{x} \overline{1}=\bar{x} \neq 0$ where $\bar{x}=x+\left(x^{2}\right)$ and $\overline{1}=1+\left(x^{2}\right)$. Hence ${ }_{R} R$ is not q-reduced.

Example 1.5. Let F be a field and $R=F<x, y>$ be the free algebra in two noncommuting indeterminates x and y. Put $I=R y$ be the left ideal of R generated by y. Then $M=R / R y$ is a q-reduced module which is not semicommutative. To prove this, we need some steps.

Step 1. For f, g and $h \in R$, if $f+f g x+h y=0$ and $f \neq 0$, then $g=0$.
Proof. Note that f has no constant term so we can write $f=f_{1} x+f_{2} y$ with $f_{1}, f_{2} \in R$. From the equality $f+f g x+h y=0$, we get $f_{1} x=-(f g) x$. If
$f_{1} \neq 0$, then $f g \neq 0$ and $\operatorname{deg} f_{1}<\operatorname{deg} f_{1} x \leq \operatorname{deg} f \leq \operatorname{deg} f g=\operatorname{deg} f_{1}$. This is a contradiction, so $f_{1}=0$ and hence $f g=0$ and so $g=0$.

Step 2. For f, g and $h \in R$, if $f+f x g+h y g=0$, then $f=0$.
Proof. Assume $f \neq 0$. Then $f=f^{\prime} g$ with $f^{\prime} \neq 0, g \neq 0$ where $f^{\prime}=-(f x+h y)$. Thus $0=f+f x g+h y g=\left(f^{\prime}+f^{\prime} g x+h y\right) g$, and hence $f^{\prime}+f^{\prime} g x+h y=0$ since $g \neq 0$. Since $f^{\prime} \neq 0$ it follows from Step 1 that $g=0$, a contradiction. So $f=0($ and $h y g=0)$.

Step 3. Let $r, s \in R$. If $r s \in I$ and $r \neq 0$, then either $s \in I$ or $r \in I$ and $s=a+g y$ for some $a \in F, g \in R$.

Proof. Let $r=a+f_{1} x+f_{2} y, s=b+g_{1} x+g_{2} y$ where $a, b \in F$ and $f_{i}, g_{i} \in R(i=$ $1,2)$. Then $0 \equiv r s=a b+\left(b f_{1}+a g_{1}+f_{1} x g_{1}+f_{2} y g_{1}\right) x+\left(b f_{2}+a g_{2}+f_{1} x g_{2}+f_{2} y g_{2}\right) y$ $\equiv a b+\left(b f_{1}+a g_{1}+f_{1} x g_{1}+f_{2} y g_{1}\right) x(\bmod I)$.
Since polynomials in I have zero constant terms, we have $a b=0$ and

$$
b f_{1}+a g_{1}+f_{1} x g_{1}+f_{2} y g_{1}=0(*)
$$

Case 1. If $b=0$, then $(*)$ can be rewritten as $0=a g_{1}+f_{1} x g_{1}+f_{2} y g_{1}=r g_{1}$. Then $g_{1}=0$. Hence, $s=b+g_{1} x+g_{2} y=g_{2} y \in I$.

Case 2. If $b \neq 0$, then $a=0$ and we get $b f_{1}+f_{1} x g_{1}+\left(f_{2} y\right) g_{1}=0$ from $(*)$. Hence $f_{1}+f_{1} x\left(\frac{1}{b} g_{1}\right)+f_{2} y\left(\frac{1}{b} g_{1}\right)=0$, it follows from Step 2 that $f_{1}=0$. Since $f \neq 0$, we get $f_{2} \neq 0$ and $g_{1}=0$. Therefore $r=a+f_{1} x+f_{2} y=f_{2} y \in I$ and $s=b+g_{1} x+g_{2} y=b+g_{2} y$.

Step 4. If $r \in R$ and $r^{2} \in I$, then $r \in I$.
Proof. Take $s=r$ and apply Step 3.

Step 5. If $r, s \in R$ and $r^{2} s \in I$, then $r s \in I$.
Proof. If $r=0$, then there is nothing to prove. So we may assume $r \neq 0$ (so $\left.r^{2} \neq 0\right)$. By Step 3, either $s \in I$ or $r^{2} \in I$ and $s=a+g y$ for some $a \in F$ and $g \in R$. If $s \in I$, then clearly $r s \in I$. If $r^{2} \in I$ and $s=a+g y$, then by Step 4 , $r \in I$, and hence $r s=r(a+g y) \in I$.

Step 6. ${ }_{R} M$ is q-reduced.
Proof. For $r, s \in R$, if $r^{2}(s+I)=0$ then $r^{2} s \in I$. By step $5, r s \in I$ and hence $r(s+I)=r s+I=0$.

Step 7. ${ }_{R} M$ is not semicommutative.

Proof. Note that $y(1+I)=0$, but $y x(1+I) \neq 0$ in M. Hence ${ }_{R} M$ is not semicommutative.

2. Properties of rings and modules

Proposition 2.1. Let R be a ring. Then
(1) R is a reduced ring if and only if ${ }_{R} R$ is a reduced module if and only if ${ }_{R} R$ is a q-reduced module.
(2) R is a semicommutative ring if and only if ${ }_{R} R$ is a semicommutative module.
(3) R is an abelian ring if and only if ${ }_{R} R$ is an abelian module.

Proof. (1) Suppose R is a reduced ring and $a x=0$ for $a, x \in R$. If $y \in R x \cap a R$, then $y=b x=a z$ for some $b, z \in R$. Thus, $x y=x b x=x a z$. Note that $x a=0$, thus $x b x=x a z=0$. Since $(b x)^{2}=0$ and R is reduced, we obtain $y=b x=0$ and hence $R x \cap a R=(0)$. If ${ }_{R} R$ is reduced, then ${ }_{R} R$ is q-reduced by Lemma 1.2 (1). Now if ${ }_{R} R$ is q-reduced and $r^{2}=0$ for $r \in R$, then $r^{2} 1=r^{2}=0$, hence $r=r 1=0$. Thus R is a reduced ring.
Proofs of (2) and (3) are obvious from the definitions.
For a left module ${ }_{R} M$, the annihilator $l_{R}(M)=\cap\left\{l_{R}(x) \mid x \in M\right\}$ is a twosided ideal of $R . M$ is said to be faithful if $l_{R}(M)=(0)$. A ring R with a faithful and irreducible left module is called a left primitive ring. For example, every matrix ring over a division ring is left primitive.

Corollary 2.2. Let R be a ring. Then
(1) R is reduced if and only if R has a faithful and reduced module if and only if R has a faithful and q-reduced module.
(2) R is semicommutative if and only if R has a faithful and semicommutative module.
(3) R is abelian if and only if R has a faithful and abelian module.

Proof. Note that if R is a reduced(resp., semicommutative, abelian) ring, then ${ }_{R} R$ is both faithful and reduced(resp., semicommutative, abelian).
(1) Since the only if parts are obvious, it suffices to show that if R has a faithful and q-reduced module, then it is reduced. Let ${ }_{R} M$ be a faithful and q-reduced R-module. If $a \in R$ and $a^{2}=0$, then $a^{2} M=(0)$. Since M is q-reduced and faithful, $a M=0$ and hence $a=0$.
(2) Let ${ }_{R} M$ be a faithful and semicommutative module. If $a, b \in R$ and $a b=0$, then $a b M=(0)$. Thus $(a R b) M=(0)$ and so $a R b=0$.
(3) Let ${ }_{R} M$ be a faithful and abelian module. If $e=e^{2}, r \in R$, then $(e r-r e) M=(0)$. Thus $e r=r e$, since M is faithful.

A ring R is said to be prime if $a R b=0$ implies either $a=0$ or $b=0$. Primitive rings are prime. For modules over a prime or primitive ring, we have the following.

Proposition 2.3. Let R be a prime ring. Then the following are equivalent.
(1) R is a domain.
(2) There is a faithful module ${ }_{R} M$ which is reduced.
(3) There is a faithful module ${ }_{R} M$ which is q-reduced.
(4) There is a faithful module ${ }_{R} M$ which is semicommutative.

Proof. (1) $\Longrightarrow(2)$ If R is a domain, then ${ }_{R} R$ is a faithful and reduced R-module. $(2) \Longrightarrow(3)$ and $(2) \Longrightarrow(4)$ are by Lemma 1.2(1).
$(3) \Longrightarrow(1)$ Suppose ${ }_{R} M$ is a faithful and q-reduced module. If $a b=0(a, b \in R)$, then $(b R a)^{2} M=0$. Since ${ }_{R} M$ is q-reduced, we have $(b R a) M=0$. Thus $b R a=0$, so $a=0$ or $b=0$.
$(4) \Longrightarrow(1)$ Suppose ${ }_{R} M$ is a faithful and semicommutative module. If $a, b \in R$ such that $a b=0$, then $a(b M)=(a b) M=0$. Thus, $(a R b) M=a R(b M)=0$ since M is semicommutative. This implies $a R b=0$ and so $a=0$ or $b=0$.

Lemma 2.4. Let ${ }_{R} M$ be a faithful and irreducible module. If M is q-reduced or semicommutative, then $l_{R}(x)=0$ for all $0 \neq x \in M$.

Proof. Case 1. Suppose ${ }_{R} M$ is q-reduced. Assume on the contrary that $I=$ $l_{R}(x) \neq(0)$ for some $0 \neq x \in M$. Since ${ }_{R} M$ is faithful and irreducible, $I y=M$ for some $y \in M$. Now $x \in M=I y$, so $x=a y$ for some $a \in I=l_{R}(x)$. Since M is q-reduced and $a^{2} y=a x=0$, we have $x=a y=0$, contradiction. So $l_{R}(x)=(0)$ for all $0 \neq x \in M$.
Case 2. Suppose ${ }_{R} M$ is semicommutative and $0 \neq x \in M, a \in l_{R}(x)$. Then $a x=0$, and hence $a M=a(R x)=a R x=(0)$. Hence $a=0$.

Theorem 2.5. Let R be a left primitive ring with a faithful and irreducible module ${ }_{R} M$. Then the following are equivalent.
(1) R is a division ring.
(2) M is reduced.
(3) M is q-reduced.
(4) M is semicommutative.

Proof. $(1) \Rightarrow(2) \Rightarrow(3)$ and $(1) \Rightarrow(2) \Rightarrow(4)$ are obvious, since a vector space over a division ring is a reduced module.
$(3) \Rightarrow(1)$ and $(4) \Rightarrow(1)$. Let $0 \neq a \in R$; then $a x \neq 0$ for some $0 \neq x \in M$. So $M=R a x$, hence $x=b a x$ for some $b \in R$. Now $1-b a \in l_{R}(x)=(0)$. Therefore $b a=1$ and so R is a division ring.

By left-right symmetry, we have the following.
Corollary 2.6. For a ring R, the following are equivalent.
(1) R is a division ring.
(2) R has a faithful and irreducible right R-module which is reduced.
(3) R has a faithful and irreducible right R-module which is q-reduced.
(4) R has a faithful and irreducible right R-module which is semicommutative.

3. Modules over strongly regular rings

In this section, we prove that a ring R is strongly regular if and only if every left(or right) R-module is reduced. A ring R is (von Neumann) regular if for each $a \in R, a=a b a$ for some $b \in R . R$ is strongly regular if for each $a \in R, a=b a^{2}$ for some $b \in R$. It is well-known that R is strongly regular if and only if it is abelian and regular [3, Theorem 3.5].

Note that a left R-module M is flat if the tensor functor $-\otimes_{R} M$ is left exact.
Theorem 3.1. For a ring R, the following are equivalent.
(1) R is regular.
(2) Every left R-module is flat.

Proof. See [4, Proposition 5.4.4].

Lemma 3.2. Let R be a strongly regular ring. Then
(1) For each $a \in R$, there exists a unique element $b \in R$ such that $a b=b a$, and $a=a^{2} b=b a^{2}$. Moreover, $a b$ is a central idempotent.
(2) R is reduced.
(3) R is left duo.

Proof. (1) See [1, Lemma 1]. (2) Let $a \in R$ with $a^{2}=0$. Choose $b \in R$ such that $a=b a^{2}$, hence $a=b a^{2}=0$ and R is reduced.
(3) Let I be a left ideal of R and $a \in I, r \in R$. Choose $b \in R$ such that $a=b a^{2}$, and $a b=b a$ is central. Then $a r=\left(b a^{2}\right) r=(b a)(a r)=(a r)(b a) \in I$, so I is an ideal.

Next theorem is a main result of this article.
Theorem 3.3. For a ring R, the following are equivalent.
(1) R is strongly regular.
(2) Every left R-module is reduced.
(3) Every left R-module is q-reduced.
(4) Every principal left R-module is q-reduced.

Proof. (1) \Rightarrow (2) Suppose that R is strongly regular. First we claim that every left R-module is q-reduced. To see this let M be a left R-module and $a^{2} x=0$ for $a \in R$ and $x \in M$. Then $a x=\left(b a^{2}\right) x=b\left(a^{2} x\right)=0$ for some $b \in R$, and hence ${ }_{R} M$ is a q-reduced module. Now R is left duo by Lemma 3.2(3), so every left R-module is semicommutative. Therefore every left R-module is reduced.
$(2) \Rightarrow(3) \Rightarrow(4)$ are obvious.
(4) \Rightarrow (1) For $a \in R$, let $M=R / R a^{2}$ and $x=1+R a^{2} \in M$. Then M
is principal, hence is a q-reduced left R-module by assumption (4). Since $a^{2} x=0$, we have $a x=0$. This implies that $a \in R a^{2}$, hence $a=b a^{2}$ for some $b \in R$.

References

[1] G.Azumaya, Strongly π-regular Rings, Journal of Fac.Sci.Hokkaido Univ. Ser. I. 13, (1954), 34-39. MR 16, 788
[2] A.Buhpang and M.Rege, Semicommutative modules and Armendariz modules, Arab Journal of Math. Sci.18(2002), 53-65
[3] K.R.Goordearl, Von Neumann Regular Rings, Pitman Publ, (1979)
[4] J.Lambek, Lectures on rings and modules, Blaisdell Publishing Company (1966)
[5] C.P.Zhang and J.L.Chen, $\alpha-$ Skew Armendariz and α-Semicommutative modules, Taiwan.J. Of Math. Vol. 12, No. 2, (2008), 473-486

Chan Huh
Department of Mathematics
Pusan National University
Busan 46241, Korea
E-mail address: chuh@pusan.ac.kr
Jeoung Soo Cheon
Department of Mathematics
Pusan National University
Busan 46241, Korea
E-mail address: jeoungsoo@pusan.ac.kr
Du Won Kim
Department of Mathematics
Pusan National University
Busan 46241, Korea
E-mail address: landland@daum.net

