

REDUCED MODULES AND STRONGLY REGULAR RINGS

Chan Huh*[†], Jeoung Soo Cheon, and Du Won Kim

ABSTRACT. It is a well-known fact that a ring R is regular if and only if every left R-modules is flat. In this article we prove that a ring R is strongly regular if and only if every left R-modules is reduced if and only if every left-R modules is quasi-reduced.

1. Introduction

Throughout all rings are associative with identity and all modules are unitary. Let R be a ring. Note that an element $a \in R$ is nilpotent if $a^n = 0$ for some $n \ge 1$, and R is reduced if R has no nonzero nilpotent elements. Ris semicommutative if for $a, b \in R$, ab = 0 implies that aRb = 0, and Ris abelian if every idempotent $e = e^2 \in R$ is central. It is not difficult to show that reduced rings are semicommutative and semicommutative rings are abelian. It can be also proved that a ring R is semicommutative if and only if $l(x) = \{a \in R | ax = 0\}$ is a two-sided ideal if and only if $r(x) = \{a \in R | xa = 0\}$ is a two-sided ideal for any $x \in R$. A ring R is left *duo* if every left ideal of R is two-sided. Right duo ring is defined analogously. Clearly left or right duo rings are semicommutative.

Many properties of rings can be extended to modules. Due to Zhang [5] and Buhpang et al. [2], a left module $_RM$ is reduced if ax = 0 implies that $aM \cap Rx = (0)$ for $a \in R$, $x \in M$. M is semicommutative if ax = 0 implies aRx = (0), and M is abelian if (ea)x = (ae)x for any $a, e \in R$ with $e = e^2$ and $x \in M$.

Now we introduce a generalization of reducedness for modules. A module $_RM$ is said to be *quasi-reduced* (briefly *q-reduced*) if $a^n x = 0$ ($a \in R$, $x \in M$, $n \ge 1$) implies ax = 0. Note that $_RM$ is *q*-reduced if and only if ax = 0 whenever $a^2x = 0$ for $a \in R$, $x \in M$.

For modules we have the following.

©2017 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received November 7, 2016; Accepted January 20, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 16D, 16S, 16W.

Key words and phrases. Reduced rings and modules, Regular and strongly regular rings.

 $^{^\}dagger$ This work was supported by a 2-year Research Grant of Pusan National University.

^{*} Corresponding author.

Proposition 1.1. A module $_RM$ is semicommutative if and only if $l_R(x)$ is a two sided ideal of R for each $x \in M$, where $l_R(x) = \{r \in R | rx = 0\}$.

Lemma 1.2. Let R be a ring and M a left R-Module. Then (1) If M is reduced, then it is both q-reduced and semicommutative. (2) If M is q-reduced or semicommutative, then it is abelian.

Proof. (1) Suppose M is a reduced module. If $a^2x = 0$ for $a \in R$, $x \in M$, then $a(ax) = a^2x = 0$. This means that $R(ax) \cap aM = (0)$. Since $ax \in R(ax) \cap aM$, we have ax = 0. Thus M is q-reduced. Now ax = 0 implies that $arx \in Rx \cap aM = (0)$ for all $r \in R$. Thus, aRx = (0), this proves that M is semicommutative.

(2) Let $e = e^2 \in R$. Suppose M is q-reduced. Since $(ere - er)^2 = (ere - re)^2 = 0$ for all $r \in R$, we get (ere - er)x = (ere - re)x = 0 for any $x \in M$. Thus (re)x = (ere)x = (er)x. Now if M is semicommutative, then er(1 - e)x = (1 - e)rex = 0 for all $e = e^2$, $r \in R$ and $x \in M$, since e(1 - e) = (1 - e)e = 0. Thus, (re)x = (ere)x = (er)x for all $r \in R$ and $x \in M$.

Theorem 1.3. A left module M over a ring R is reduced if and only if it is both q-reduced and semicommutative.

Proof. The only if part is given by Lemma 1.2(1). Suppose that $_RM$ is q-reduced and semicommutative. If ax = 0 with $a \in R$, $x \in M$ and $y \in Rx \cap aM$, then y = bx = az for some $b \in R$ and $z \in M$. Since M is semicommutative, and ax = 0, we get ay = abx = 0, hence $a^2z = ay = 0$. This implies that y = az = 0 since M is q-reduced. Therefore $Rx \cap aM = (0)$.

The concepts of semicommutativity and quasi-reducedness are independent.

Example 1.4. Let F be a field and $R = \frac{F[x]}{(x^2)}$, where (x^2) is the ideal generated by $x^2 \in F[x]$. Then R is commutative, hence semicommutative. The left regular module $_RR$ is a semicommutative which is not q-reduced, because $\overline{x}^2\overline{1} = \overline{x}^2 = 0$ but $\overline{x}\overline{1} = \overline{x} \neq 0$ where $\overline{x} = x + (x^2)$ and $\overline{1} = 1 + (x^2)$. Hence $_RR$ is not q-reduced.

Example 1.5. Let F be a field and $R = F \langle x, y \rangle$ be the free algebra in two noncommuting indeterminates x and y. Put I = Ry be the left ideal of R generated by y. Then M = R/Ry is a q-reduced module which is not semicommutative. To prove this, we need some steps.

Step 1. For f, g and $h \in R$, if f + fgx + hy = 0 and $f \neq 0$, then g = 0.

Proof. Note that f has no constant term so we can write $f = f_1 x + f_2 y$ with $f_1, f_2 \in \mathbb{R}$. From the equality f + fgx + hy = 0, we get $f_1 x = -(fg)x$. If

 $f_1 \neq 0$, then $fg \neq 0$ and $\deg f_1 < \deg f_1 x \leq \deg f \leq \deg fg = \deg f_1$. This is a contradiction, so $f_1 = 0$ and hence fg = 0 and so g = 0.

Step 2. For f, g and $h \in R$, if f + fxg + hyg = 0, then f = 0.

Proof. Assume $f \neq 0$. Then f = f'g with $f' \neq 0$, $g \neq 0$ where f' = -(fx+hy). Thus 0 = f + fxg + hyg = (f' + f'gx + hy)g, and hence f' + f'gx + hy = 0since $g \neq 0$. Since $f' \neq 0$ it follows from Step 1 that g = 0, a contradiction. So f = 0 (and hyg = 0).

Step 3. Let $r, s \in R$. If $rs \in I$ and $r \neq 0$, then either $s \in I$ or $r \in I$ and s = a + qy for some $a \in F, q \in R$.

Proof. Let $r = a + f_1x + f_2y$, $s = b + g_1x + g_2y$ where $a, b \in F$ and $f_i, g_i \in R(i = 1, 2)$. Then $0 \equiv rs = ab + (bf_1 + ag_1 + f_1xg_1 + f_2yg_1)x + (bf_2 + ag_2 + f_1xg_2 + f_2yg_2)y \equiv ab + (bf_1 + ag_1 + f_1xg_1 + f_2yg_1)x \pmod{I}$.

Since polynomials in I have zero constant terms, we have ab = 0 and

$$bf_1 + ag_1 + f_1 xg_1 + f_2 yg_1 = 0 \ (*)$$

Case 1. If b = 0, then (*) can be rewritten as $0 = ag_1 + f_1xg_1 + f_2yg_1 = rg_1$. Then $g_1 = 0$. Hence, $s = b + g_1x + g_2y = g_2y \in I$.

Case 2. If $b \neq 0$, then a = 0 and we get $bf_1 + f_1xg_1 + (f_2y)g_1 = 0$ from (*). Hence $f_1 + f_1x(\frac{1}{b}g_1) + f_2y(\frac{1}{b}g_1) = 0$, it follows from Step 2 that $f_1 = 0$. Since $f \neq 0$, we get $f_2 \neq 0$ and $g_1 = 0$. Therefore $r = a + f_1x + f_2y = f_2y \in I$ and $s = b + g_1x + g_2y = b + g_2y$.

Step 4. If $r \in R$ and $r^2 \in I$, then $r \in I$.

Proof. Take s = r and apply Step 3.

Step 5. If $r, s \in R$ and $r^2 s \in I$, then $rs \in I$.

Proof. If r = 0, then there is nothing to prove. So we may assume $r \neq 0$ (so $r^2 \neq 0$). By Step 3, either $s \in I$ or $r^2 \in I$ and s = a + gy for some $a \in F$ and $g \in R$. If $s \in I$, then clearly $rs \in I$. If $r^2 \in I$ and s = a + gy, then by Step 4, $r \in I$, and hence $rs = r(a + gy) \in I$.

Step 6. $_RM$ is q-reduced.

Proof. For $r, s \in R$, if $r^2(s+I) = 0$ then $r^2s \in I$. By step 5, $rs \in I$ and hence r(s+I) = rs + I = 0.

Step 7. $_RM$ is not semicommutative.

Proof. Note that y(1+I) = 0, but $yx(1+I) \neq 0$ in M. Hence $_RM$ is not semicommutative.

2. Properties of rings and modules

Proposition 2.1. Let R be a ring. Then

(1) R is a reduced ring if and only if $_{R}R$ is a reduced module if and only if $_{R}R$ is a q-reduced module.

(2) R is a semicommutative ring if and only if R is a semicommutative module.
(3) R is an abelian ring if and only if R is an abelian module.

Proof. (1) Suppose R is a reduced ring and ax = 0 for $a, x \in R$. If $y \in Rx \cap aR$, then y = bx = az for some $b, z \in R$. Thus, xy = xbx = xaz. Note that xa = 0, thus xbx = xaz = 0. Since $(bx)^2 = 0$ and R is reduced, we obtain y = bx = 0 and hence $Rx \cap aR = (0)$. If $_RR$ is reduced, then $_RR$ is q-reduced by Lemma 1.2 (1). Now if $_RR$ is q-reduced and $r^2 = 0$ for $r \in R$, then $r^2 1 = r^2 = 0$, hence r = r1 = 0. Thus R is a reduced ring.

Proofs of (2) and (3) are obvious from the definitions.

For a left module $_RM$, the annihilator $l_R(M) = \cap \{l_R(x) | x \in M\}$ is a twosided ideal of R. M is said to be *faithful* if $l_R(M) = (0)$. A ring R with a faithful and irreducible left module is called a left *primitive ring*. For example, every matrix ring over a division ring is left primitive.

Corollary 2.2. Let R be a ring. Then

(1) R is reduced if and only if R has a faithful and reduced module if and only if R has a faithful and q-reduced module.

(2) R is semicommutative if and only if R has a faithful and semicommutative module.

(3) R is abelian if and only if R has a faithful and abelian module.

Proof. Note that if R is a reduced(resp., semicommutative, abelian) ring, then $_{R}R$ is both faithful and reduced(resp., semicommutative, abelian).

(1) Since the only if parts are obvious, it suffices to show that if R has a faithful and q-reduced module, then it is reduced. Let $_RM$ be a faithful and q-reduced R-module. If $a \in R$ and $a^2 = 0$, then $a^2M = (0)$. Since M is q-reduced and faithful, aM = 0 and hence a = 0.

(2) Let $_RM$ be a faithful and semicommutative module. If $a, b \in R$ and ab = 0, then abM = (0). Thus (aRb)M = (0) and so aRb = 0.

(3) Let $_RM$ be a faithful and abelian module. If $e = e^2$, $r \in R$, then (er - re)M = (0). Thus er = re, since M is faithful.

A ring R is said to be *prime* if aRb = 0 implies either a = 0 or b = 0. Primitive rings are prime. For modules over a prime or primitive ring, we have the following.

Proposition 2.3. Let R be a prime ring. Then the following are equivalent. (1) R is a domain.

- (2) There is a faithful module $_{R}M$ which is reduced.
- (3) There is a faithful module $_{R}M$ which is q-reduced.
- (4) There is a faithful module $_{\rm B}M$ which is semicommutative.

Proof. (1) \Longrightarrow (2) If R is a domain, then $_RR$ is a faithful and reduced R-module. (2) \Longrightarrow (3) and (2) \Longrightarrow (4) are by Lemma 1.2(1).

(3) \implies (1) Suppose $_RM$ is a faithful and q-reduced module. If ab = 0 $(a, b \in R)$, then $(bRa)^2M = 0$. Since $_RM$ is q-reduced, we have (bRa)M = 0. Thus bRa = 0, so a = 0 or b = 0.

(4) \implies (1) Suppose $_RM$ is a faithful and semicommutative module. If $a, b \in R$ such that ab = 0, then a(bM) = (ab)M = 0. Thus, (aRb)M = aR(bM) = 0 since M is semicommutative. This implies aRb = 0 and so a = 0 or b = 0. \Box

Lemma 2.4. Let $_RM$ be a faithful and irreducible module. If M is q-reduced or semicommutative, then $l_R(x) = 0$ for all $0 \neq x \in M$.

Proof. Case 1. Suppose $_RM$ is q-reduced. Assume on the contrary that $I = l_R(x) \neq (0)$ for some $0 \neq x \in M$. Since $_RM$ is faithful and irreducible, Iy = M for some $y \in M$. Now $x \in M = Iy$, so x = ay for some $a \in I = l_R(x)$. Since M is q-reduced and $a^2y = ax = 0$, we have x = ay = 0, contradiction. So $l_R(x) = (0)$ for all $0 \neq x \in M$.

Case 2. Suppose $_RM$ is semicommutative and $0 \neq x \in M$, $a \in l_R(x)$. Then ax = 0, and hence aM = a(Rx) = aRx = (0). Hence a = 0.

Theorem 2.5. Let R be a left primitive ring with a faithful and irreducible module $_{R}M$. Then the following are equivalent.

- (1) R is a division ring.
- (2) M is reduced.
- (3) M is q-reduced.
- (4) M is semicommutative.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ and $(1) \Rightarrow (2) \Rightarrow (4)$ are obvious, since a vector space over a division ring is a reduced module.

(3) \Rightarrow (1) and (4) \Rightarrow (1). Let $0 \neq a \in R$; then $ax \neq 0$ for some $0 \neq x \in M$. So M = Rax, hence x = bax for some $b \in R$. Now $1 - ba \in l_R(x) = (0)$. Therefore ba = 1 and so R is a division ring.

By left-right symmetry, we have the following.

Corollary 2.6. For a ring R, the following are equivalent.

(1) R is a division ring.

(2) R has a faithful and irreducible right R-module which is reduced.

(3) R has a faithful and irreducible right R-module which is q-reduced.
(4) R has a faithful and irreducible right R-module which is semicommutative.

3. Modules over strongly regular rings

In this section, we prove that a ring R is strongly regular if and only if every left(or right) R-module is reduced. A ring R is (von Neumann) regular if for each $a \in R$, a = aba for some $b \in R$. R is strongly regular if for each $a \in R$, $a = ba^2$ for some $b \in R$. It is well-known that R is strongly regular if and only if it is abelian and regular [3, Theorem 3.5].

Note that a left *R*-module *M* is flat if the tensor functor $-\otimes_R M$ is left exact.

Theorem 3.1. For a ring R, the following are equivalent. (1) R is regular.

(2) Every left R-module is flat.

Proof. See [4, Proposition 5.4.4].

Lemma 3.2. Let R be a strongly regular ring. Then (1) For each $a \in R$, there exists a unique element $b \in R$ such that ab = ba, and $a = a^2b = ba^2$. Moreover, ab is a central idempotent. (2) R is reduced. (3) R is left duo.

Proof. (1) See [1, Lemma 1]. (2) Let $a \in R$ with $a^2 = 0$. Choose $b \in R$ such that $a = ba^2$, hence $a = ba^2 = 0$ and R is reduced. (3) Let I be a left ideal of R and $a \in I$, $r \in R$. Choose $b \in R$ such that $a = ba^2$, and ab = ba is central. Then $ar = (ba^2)r = (ba)(ar) = (ar)(ba) \in I$, so I is an ideal.

Next theorem is a main result of this article.

Theorem 3.3. For a ring R, the following are equivalent.

- (1) R is strongly regular.
- (2) Every left R-module is reduced.
- (3) Every left R-module is q-reduced.
- (4) Every principal left R-module is q-reduced.

Proof. (1) \Rightarrow (2) Suppose that *R* is strongly regular. First we claim that every left *R*-module is *q*-reduced. To see this let *M* be a left *R*-module and $a^2x = 0$ for $a \in R$ and $x \in M$. Then $ax = (ba^2)x = b(a^2x) = 0$ for some $b \in R$, and hence $_RM$ is a *q*-reduced module. Now *R* is left duo by Lemma 3.2(3), so every left *R*-module is semicommutative. Therefore every left *R*-module is reduced. (2) \Rightarrow (3) \Rightarrow (4) are obvious.

(4) \Rightarrow (1) For $a \in R$, let $M = R/Ra^2$ and $x = 1 + Ra^2 \in M$. Then M

is principal, hence is a q-reduced left R-module by assumption (4). Since $a^2x = 0$, we have ax = 0. This implies that $a \in Ra^2$, hence $a = ba^2$ for some $b \in R$.

References

- G.Azumaya, Strongly π-regular Rings, Journal of Fac.Sci.Hokkaido Univ. Ser. I. 13, (1954), 34-39. MR 16, 788
- [2] A.Buhpang and M.Rege, Semicommutative modules and Armendariz modules, Arab Journal of Math. Sci.18(2002), 53-65
- [3] K.R.Goordearl, Von Neumann Regular Rings, Pitman Publ, (1979)
- [4] J.Lambek, Lectures on rings and modules, Blaisdell Publishing Company (1966)
- [5] C.P.Zhang and J.L.Chen, α-Skew Armendariz and α-Semicommutative modules, Taiwan.J. Of Math. Vol. 12, No. 2, (2008), 473-486

CHAN HUH DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY BUSAN 46241, KOREA *E-mail address*: chuh@pusan.ac.kr

JEOUNG SOO CHEON DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY BUSAN 46241, KOREA *E-mail address*: jeoungsoo@pusan.ac.kr

Du Won Kim Department of Mathematics Pusan National University Busan 46241, Korea *E-mail address*: landland@daum.net