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REDUCED MODULES AND STRONGLY REGULAR RINGS

Chan Huh∗ †, Jeoung Soo Cheon, and Du Won Kim

Abstract. It is a well-known fact that a ring R is regular if and only
if every left R-modules is flat. In this article we prove that a ring R is

strongly regular if and only if every left R-modules is reduced if and only

if every left-R modules is quasi-reduced.

1. Introduction

Throughout all rings are associative with identity and all modules are unitary.
Let R be a ring. Note that an element a ∈ R is nilpotent if an = 0 for
some n ≥ 1, and R is reduced if R has no nonzero nilpotent elements. R
is semicommutative if for a, b ∈ R, ab = 0 implies that aRb = 0, and R
is abelian if every idempotent e = e2 ∈ R is central. It is not difficult to
show that reduced rings are semicommutative and semicommutative rings are
abelian. It can be also proved that a ring R is semicommutative if and only if
l(x) = {a ∈ R|ax = 0} is a two-sided ideal if and only if r(x) = {a ∈ R|xa = 0}
is a two-sided ideal for any x ∈ R. A ring R is left duo if every left ideal of R is
two-sided. Right duo ring is defined analogously. Clearly left or right duo rings
are semicommutative.

Many properties of rings can be extended to modules. Due to Zhang [5]
and Buhpang et al. [2], a left module RM is reduced if ax = 0 implies that
aM ∩ Rx = (0) for a ∈ R, x ∈ M . M is semicommutative if ax = 0 implies
aRx = (0), and M is abelian if (ea)x = (ae)x for any a, e ∈ R with e = e2 and
x ∈M .

Now we introduce a generalization of reducedness for modules. A module RM
is said to be quasi-reduced(briefly q-reduced) if anx = 0 (a ∈ R, x ∈M, n ≥ 1)
implies ax = 0. Note that RM is q-reduced if and only if ax = 0 whenever
a2x = 0 for a ∈ R, x ∈M .

For modules we have the following.
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Proposition 1.1. A module RM is semicommutative if and only if lR(x) is a
two sided ideal of R for each x ∈M , where lR(x) = {r ∈ R|rx = 0}.

Lemma 1.2. Let R be a ring and M a left R-Module. Then
(1) If M is reduced, then it is both q-reduced and semicommutative.
(2) If M is q-reduced or semicommutative, then it is abelian.

Proof. (1) Suppose M is a reduced module. If a2x = 0 for a ∈ R, x ∈ M ,
then a(ax) = a2x = 0. This means that R(ax) ∩ aM = (0). Since ax ∈
R(ax) ∩ aM , we have ax = 0. Thus M is q-reduced. Now ax = 0 implies that
arx ∈ Rx ∩ aM = (0) for all r ∈ R. Thus, aRx = (0), this proves that M is
semicommutative.
(2) Let e = e2 ∈ R. Suppose M is q-reduced. Since (ere−er)2 = (ere−re)2 = 0
for all r ∈ R, we get (ere − er)x = (ere − re)x = 0 for any x ∈ M . Thus
(re)x = (ere)x = (er)x. Now if M is semicommutative, then er(1 − e)x =
(1 − e)rex = 0 for all e = e2, r ∈ R and x ∈ M , since e(1 − e) = (1− e)e = 0.
Thus, (re)x = (ere)x = (er)x for all r ∈ R and x ∈M . �

Theorem 1.3. A left module M over a ring R is reduced if and only if it is
both q-reduced and semicommutative.

Proof. The only if part is given by Lemma 1.2(1). Suppose that RM is q-
reduced and semicommutative. If ax = 0 with a ∈ R, x ∈M and y ∈ Rx∩aM ,
then y = bx = az for some b ∈ R and z ∈M . Since M is semicommutative, and
ax = 0, we get ay = abx = 0, hence a2z = ay = 0. This implies that y = az = 0
since M is q-reduced. Therefore Rx ∩ aM = (0). �

The concepts of semicommutativity and quasi-reducedness are independent.

Example 1.4. Let F be a field and R =
F [x]

(x2)
, where (x2) is the ideal generated

by x2 ∈ F [x]. Then R is commutative, hence semicommutative. The left regular
module RR is a semicommutative which is not q-reduced, because x21 = x2 = 0
but x1 = x 6= 0 where x = x+(x2) and 1 = 1+(x2). Hence RR is not q-reduced.

Example 1.5. Let F be a field and R = F < x, y > be the free algebra
in two noncommuting indeterminates x and y. Put I = Ry be the left ideal
of R generated by y. Then M = R/Ry is a q-reduced module which is not
semicommutative. To prove this, we need some steps.

Step 1. For f, g and h ∈ R, if f + fgx + hy = 0 and f 6= 0, then g = 0.

Proof. Note that f has no constant term so we can write f = f1x + f2y with
f1, f2 ∈ R. From the equality f + fgx + hy = 0, we get f1x = −(fg)x. If
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f1 6= 0, then fg 6= 0 and deg f1 < deg f1x ≤ deg f ≤ deg fg =degf1. This is a
contradiction, so f1 = 0 and hence fg = 0 and so g = 0. �

Step 2. For f, g and h ∈ R, if f + fxg + hyg = 0, then f = 0.

Proof. Assume f 6= 0. Then f = f
′
g with f

′ 6= 0, g 6= 0 where f
′

= −(fx+hy).

Thus 0 = f + fxg + hyg = (f
′

+ f
′
gx + hy)g, and hence f

′
+ f

′
gx + hy = 0

since g 6= 0. Since f
′ 6= 0 it follows from Step 1 that g = 0, a contradiction. So

f = 0 (and hyg = 0). �

Step 3. Let r,s ∈ R. If rs ∈ I and r 6= 0, then either s ∈ I or r ∈ I and
s = a + gy for some a ∈ F , g ∈ R.

Proof. Let r = a+f1x+f2y, s = b+g1x+g2y where a, b ∈ F and fi, gi ∈ R(i =
1, 2). Then 0 ≡ rs = ab+(bf1+ag1+f1xg1+f2yg1)x+(bf2+ag2+f1xg2+f2yg2)y
≡ ab + (bf1 + ag1 + f1xg1 + f2yg1)x (mod I).
Since polynomials in I have zero constant terms, we have ab = 0 and

bf1 + ag1 + f1xg1 + f2yg1 = 0 (∗)

Case 1. If b = 0, then (∗) can be rewritten as 0 = ag1 + f1xg1 + f2yg1 = rg1.
Then g1 = 0. Hence, s = b + g1x + g2y = g2y ∈ I.

Case 2. If b 6= 0, then a = 0 and we get bf1 + f1xg1 + (f2y)g1 = 0 from (∗).
Hence f1 + f1x( 1

b g1) + f2y( 1
b g1) = 0, it follows from Step 2 that f1 = 0. Since

f 6= 0, we get f2 6= 0 and g1 = 0. Therefore r = a + f1x + f2y = f2y ∈ I and
s = b + g1x + g2y = b + g2y. �

Step 4. If r ∈ R and r2 ∈ I, then r ∈ I.

Proof. Take s = r and apply Step 3. �

Step 5. If r, s ∈ R and r2s ∈ I, then rs ∈ I.

Proof. If r = 0, then there is nothing to prove. So we may assume r 6= 0 (so
r2 6= 0). By Step 3, either s ∈ I or r2 ∈ I and s = a + gy for some a ∈ F and
g ∈ R. If s ∈ I, then clearly rs ∈ I. If r2 ∈ I and s = a + gy, then by Step 4,
r ∈ I, and hence rs = r(a + gy) ∈ I. �

Step 6. RM is q-reduced.

Proof. For r, s ∈ R, if r2(s + I) = 0 then r2s ∈ I. By step 5, rs ∈ I and hence
r(s + I) = rs + I = 0. �

Step 7. RM is not semicommutative.
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Proof. Note that y(1 + I) = 0, but yx(1 + I) 6= 0 in M . Hence RM is not
semicommutative. �

2. Properties of rings and modules

Proposition 2.1. Let R be a ring. Then
(1) R is a reduced ring if and only if RR is a reduced module if and only if RR
is a q-reduced module.
(2) R is a semicommutative ring if and only if RR is a semicommutative module.
(3) R is an abelian ring if and only if RR is an abelian module.

Proof. (1) Suppose R is a reduced ring and ax = 0 for a, x ∈ R. If y ∈ Rx∩aR,
then y = bx = az for some b, z ∈ R. Thus, xy = xbx = xaz. Note that xa = 0,
thus xbx = xaz = 0. Since (bx)2 = 0 and R is reduced, we obtain y = bx = 0
and hence Rx ∩ aR = (0). If RR is reduced, then RR is q-reduced by Lemma
1.2 (1). Now if RR is q-reduced and r2 = 0 for r ∈ R, then r21 = r2 = 0, hence
r = r1 = 0. Thus R is a reduced ring.
Proofs of (2) and (3) are obvious from the definitions. �

For a left module RM , the annihilator lR(M) = ∩ {lR(x)|x ∈ M} is a two-
sided ideal of R. M is said to be faithful if lR(M) = (0). A ring R with a
faithful and irreducible left module is called a left primitive ring. For example,
every matrix ring over a division ring is left primitive.

Corollary 2.2. Let R be a ring. Then
(1) R is reduced if and only if R has a faithful and reduced module if and only
if R has a faithful and q-reduced module.
(2) R is semicommutative if and only if R has a faithful and semicommutative
module.
(3) R is abelian if and only if R has a faithful and abelian module.

Proof. Note that if R is a reduced(resp., semicommutative, abelian) ring, then

RR is both faithful and reduced(resp., semicommutative, abelian).
(1) Since the only if parts are obvious, it suffices to show that if R has a faithful
and q-reduced module, then it is reduced. Let RM be a faithful and q-reduced
R-module. If a ∈ R and a2 = 0, then a2M = (0). Since M is q-reduced and
faithful, aM = 0 and hence a = 0.
(2) Let RM be a faithful and semicommutative module. If a, b ∈ R and ab = 0,
then abM = (0). Thus (aRb)M = (0) and so aRb = 0.
(3) Let RM be a faithful and abelian module. If e = e2, r ∈ R, then
(er − re)M = (0). Thus er = re, since M is faithful. �

A ring R is said to be prime if aRb = 0 implies either a = 0 or b = 0.
Primitive rings are prime. For modules over a prime or primitive ring, we have
the following.
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Proposition 2.3. Let R be a prime ring. Then the following are equivalent.
(1) R is a domain.
(2) There is a faithful module RM which is reduced.
(3) There is a faithful module RM which is q-reduced.
(4) There is a faithful module RM which is semicommutative.

Proof. (1) =⇒ (2) If R is a domain, then RR is a faithful and reduced R-module.
(2) =⇒ (3) and (2) =⇒ (4) are by Lemma 1.2(1).
(3) =⇒ (1) Suppose RM is a faithful and q-reduced module. If ab = 0 (a, b ∈ R),
then (bRa)2M = 0. Since RM is q-reduced, we have (bRa)M = 0. Thus
bRa = 0, so a = 0 or b = 0.
(4) =⇒ (1) Suppose RM is a faithful and semicommutative module. If a, b ∈ R
such that ab = 0, then a(bM) = (ab)M = 0. Thus, (aRb)M = aR(bM) = 0
since M is semicommutative. This implies aRb = 0 and so a = 0 or b = 0. �

Lemma 2.4. Let RM be a faithful and irreducible module. If M is q-reduced
or semicommutative, then lR(x) = 0 for all 0 6= x ∈M .

Proof. Case 1. Suppose RM is q-reduced. Assume on the contrary that I =
lR(x) 6= (0) for some 0 6= x ∈M . Since RM is faithful and irreducible, Iy = M
for some y ∈ M . Now x ∈ M = Iy, so x = ay for some a ∈ I = lR(x). Since
M is q-reduced and a2y = ax = 0, we have x = ay = 0 , contradiction. So
lR(x) = (0) for all 0 6= x ∈M .
Case 2. Suppose RM is semicommutative and 0 6= x ∈ M , a ∈ lR(x). Then
ax = 0, and hence aM = a(Rx) = aRx = (0). Hence a = 0. �

Theorem 2.5. Let R be a left primitive ring with a faithful and irreducible
module RM . Then the following are equivalent.
(1) R is a division ring.
(2) M is reduced.
(3) M is q-reduced.
(4) M is semicommutative.

Proof. (1) ⇒ (2) ⇒ (3) and (1) ⇒ (2) ⇒ (4) are obvious, since a vector space
over a division ring is a reduced module.
(3)⇒ (1) and (4)⇒ (1). Let 0 6= a ∈ R; then ax 6= 0 for some 0 6= x ∈ M . So
M = Rax, hence x = bax for some b ∈ R. Now 1− ba ∈ lR(x) = (0). Therefore
ba = 1 and so R is a division ring. �

By left-right symmetry, we have the following.

Corollary 2.6. For a ring R, the following are equivalent.
(1) R is a division ring.
(2) R has a faithful and irreducible right R-module which is reduced.



80 C. HUH, J.S. CHEON, AND D.W. KIM

(3) R has a faithful and irreducible right R-module which is q-reduced.
(4) R has a faithful and irreducible right R-module which is semicommutative.

3. Modules over strongly regular rings

In this section, we prove that a ring R is strongly regular if and only if
every left(or right) R-module is reduced. A ring R is (von Neumann) regular
if for each a ∈ R, a = aba for some b ∈ R. R is strongly regular if for each
a ∈ R, a = ba2 for some b ∈ R. It is well-known that R is strongly regular if
and only if it is abelian and regular [3, Theorem 3.5].

Note that a left R-module M is flat if the tensor functor −⊗RM is left exact.

Theorem 3.1. For a ring R, the following are equivalent.
(1) R is regular.
(2) Every left R-module is flat.

Proof. See [4, Proposition 5.4.4]. �

Lemma 3.2. Let R be a strongly regular ring. Then
(1) For each a ∈ R, there exists a unique element b ∈ R such that ab = ba, and
a = a2b = ba2. Moreover, ab is a central idempotent.
(2) R is reduced.
(3) R is left duo.

Proof. (1) See [1, Lemma 1]. (2) Let a ∈ R with a2 = 0. Choose b ∈ R such
that a = ba2, hence a = ba2 = 0 and R is reduced.
(3) Let I be a left ideal of R and a ∈ I, r ∈ R. Choose b ∈ R such that a = ba2,
and ab = ba is central. Then ar = (ba2)r = (ba)(ar) = (ar)(ba) ∈ I, so I is an
ideal. �

Next theorem is a main result of this article.

Theorem 3.3. For a ring R, the following are equivalent.
(1) R is strongly regular.
(2) Every left R-module is reduced.
(3) Every left R-module is q-reduced.
(4) Every principal left R-module is q-reduced.

Proof. (1)⇒ (2) Suppose that R is strongly regular. First we claim that every
left R-module is q-reduced. To see this let M be a left R-module and a2x = 0
for a ∈ R and x ∈ M . Then ax = (ba2)x = b(a2x) = 0 for some b ∈ R, and
hence RM is a q-reduced module. Now R is left duo by Lemma 3.2(3), so every
left R-module is semicommutative. Therefore every left R-module is reduced.
(2)⇒ (3)⇒ (4) are obvious.
(4) ⇒ (1) For a ∈ R, let M = R/Ra2 and x = 1 + Ra2 ∈ M . Then M
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is principal, hence is a q−reduced left R-module by assumption (4). Since
a2x = 0, we have ax = 0. This implies that a ∈ Ra2, hence a = ba2 for some
b ∈ R. �
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