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REDUCED MODULES AND STRONGLY REGULAR RINGS

CHAN Hun* 1, JEouncg Soo CHEON, AND Du WoN KiM

ABSTRACT. It is a well-known fact that a ring R is regular if and only
if every left R-modules is flat. In this article we prove that a ring R is
strongly regular if and only if every left R-modules is reduced if and only
if every left-R modules is quasi-reduced.

1. Introduction

Throughout all rings are associative with identity and all modules are unitary.
Let R be a ring. Note that an element a € R is nilpotent if ¢ = 0 for
some n > 1, and R is reduced if R has no nonzero nilpotent elements. R
is semicommutative if for a,b € R, ab = 0 implies that aRb = 0, and R
is abelian if every idempotent e = €2 € R is central. It is not difficult to
show that reduced rings are semicommutative and semicommutative rings are
abelian. It can be also proved that a ring R is semicommutative if and only if
l(x) = {a € R|ax = 0} is a two-sided ideal if and only if r(x) = {a € R|za = 0}
is a two-sided ideal for any = € R. A ring R is left duo if every left ideal of R is
two-sided. Right duo ring is defined analogously. Clearly left or right duo rings
are semicommutative.

Many properties of rings can be extended to modules. Due to Zhang [5]
and Buhpang et al. [2], a left module g M is reduced if axz = 0 implies that
aM N Rz = (0) fora € R, x € M. M is semicommutative if ax = 0 implies
aRz = (0), and M is abelian if (ea)z = (ae)z for any a,e € R with e = €? and
reM.

Now we introduce a generalization of reducedness for modules. A module g M
is said to be quasi-reduced(briefly g-reduced) if a"x =0 (a € R, x € M, n > 1)
implies ax = 0. Note that gpM is g-reduced if and only if ax = 0 whenever
a’zr=0fora € R, x € M.

For modules we have the following.
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Proposition 1.1. A module gM is semicommutative if and only if lr(x) is a
two sided ideal of R for each © € M, where Ir(x) = {r € R|rxz = 0}.

Lemma 1.2. Let R be a ring and M a left R-Module. Then
(1) If M is reduced, then it is both q-reduced and semicommautative.
(2) If M is g-reduced or semicommutative, then it is abelian.

Proof. (1) Suppose M is a reduced module. If a?z = 0 for a € R, z € M,
then a(az) = a?x = 0. This means that R(ax) N aM = (0). Since ax €
R(ax) N aM, we have ax = 0. Thus M is g-reduced. Now axz = 0 implies that
arx € RxNaM = (0) for all € R. Thus, aRx = (0), this proves that M is
semicommutative.

(2) Let e = €? € R. Suppose M is g-reduced. Since (ere—er)? = (ere—re)? =0
for all r € R, we get (ere — er)z = (ere — re)x = 0 for any « € M. Thus
(re)x = (ere)x = (er)x. Now if M is semicommutative, then er(l — e)x =
(1—e)rex =0foralle=¢e% r€ Rand x € M, since e(1 —e) = (1 —e)e = 0.
Thus, (re)x = (ere)x = (er)z for all r € R and = € M. O

Theorem 1.3. A left module M over a ring R is reduced if and only if it is
both q-reduced and semicommutative.

Proof. The only if part is given by Lemma 1.2(1). Suppose that gM is g¢-
reduced and semicommutative. If ax = 0 witha € R, x € M and y € RxNaM,
then y = bx = az for some b € R and z € M. Since M is semicommutative, and
ax = 0, we get ay = abz = 0, hence a?z = ay = 0. This implies that y = az =0
since M is ¢g-reduced. Therefore Rx N aM = (0). O

The concepts of semicommutativity and quasi-reducedness are independent.

F
Example 1.4. Let F' be a field and R = ( [;E)] , where (2?) is the ideal generated
x
by 22 € F[z]. Then R is commutative, hence semicommutative. The left regular
module pR is a semicommutative which is not g-reduced, because 7°1 =72 = 0

but 1 =T # 0 where T = 2+ (22) and T = 1+ (2?). Hence rR is not g-reduced.

Example 1.5. Let F be a field and R = F < x,y > be the free algebra
in two noncommuting indeterminates x and y. Put I = Ry be the left ideal
of R generated by y. Then M = R/Ry is a g-reduced module which is not
semicommutative. To prove this, we need some steps.

Step 1. For f,gand he R, if f + fgz + hy = 0and f # 0, then g =0.

Proof. Note that f has no constant term so we can write f = fiz + foy with
fi, fo € R. From the equality f + fgz + hy = 0, we get fixz = —(fg)x. If
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f1 #0, then fg # 0 and deg f1 < deg fix < deg f < deg fg =degf;. This is a
contradiction, so f; = 0 and hence fg =0 and so g = 0. (]

Step 2. For f,gand he R, if f + fxg + hyg = 0, then f =0.

Proof. Assume f # 0. Then f = f g with f #0, g # 0 where f = —(fz+hy).
Thus 0 = f + fzg+ hyg = (f + f gz + hy)g, and hence [ + f gz + hy = 0
since g # 0. Since f # 0 it follows from Step 1 that g = 0, a contradiction. So
f =0 (and hyg = 0). O

Step 3. Let r,s € R. If rs € I and r # 0, then either s € I or r € I and
s=a+ gy forsomea € F, g € R.

Proof. Let r = a+ fix+ foy, s = b+gi1x+goy where a,b € F and f;,9; € R(i =
1,2). Then 0 = rs = ab+(bf1+agi+fizgi+f2yg1)z+(bfetage+ frzge+ f2yg2)y
=ab+ (bf1 +ag1 + frzgr + faygr)z (mod I).

Since polynomials in I have zero constant terms, we have ab = 0 and

bf1 +agi + frzgi + faygr =0 (%)

Case 1. If b = 0, then (x) can be rewritten as 0 = ag1 + fizg1 + foygr = r91.
Then g1 = 0. Hence, s =b+ g1+ goy = goy € I.

Case 2. If b # 0, then a = 0 and we get bf1 + fizgr + (fay)g1 = 0 from ().
Hence f; + flx(%gl) + fgy(%gl) = 0, it follows from Step 2 that f; = 0. Since
f#0, we get fo # 0 and gy = 0. Therefore r = a + fix + foy = foy € I and
s=b4+ g1z + goy = b+ gay. O

Step 4. If r € Rand 2 € I, then r € I.
Proof. Take s = r and apply Step 3. (]

Step 5. If r,s € R and r?s € I, then rs € I.

Proof. If r = 0, then there is nothing to prove. So we may assume r # 0 (so
r?2 #0). By Step 3, either s € I or 72 € I and s = a + gy for some a € F and
g € R. If s € I, then clearly rs € I. If r> € I and s = a + gy, then by Step 4,
r € I, and hence rs =r(a + gy) € I. O

Step 6. rM is g-reduced.

Proof. For r, s € R, if r?(s+ 1) = 0 then r?s € I. By step 5, rs € I and hence
r(s+I)=rs+1=0. O

Step 7. rM is not semicommutative.
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Proof. Note that y(1+ I) = 0, but yz(1 +I) # 0 in M. Hence gM is not
semicommutative. O

2. Properties of rings and modules

Proposition 2.1. Let R be a ring. Then

(1) R is a reduced ring if and only if rR is a reduced module if and only if R
18 a q-reduced module.

(2) R is a semicommutative ring if and only if rR is a semicommutative module.
(8) R is an abelian ring if and only if rRR is an abelian module.

Proof. (1) Suppose R is a reduced ring and ax = 0 for a, z € R. If y € RxNaR,
then y = bx = az for some b, z € R. Thus, zy = xbx = zaz. Note that xa = 0,
thus zbz = zaz = 0. Since (bz)? = 0 and R is reduced, we obtain y = bz = 0
and hence Rx NaR = (0). If gR is reduced, then gR is g-reduced by Lemma
1.2 (1). Now if rR is g-reduced and r2 = 0 for r € R, then 721 = r? = 0, hence
r =711 =0. Thus R is a reduced ring.

Proofs of (2) and (3) are obvious from the definitions. O

For a left module gr M, the annihilator {gr(M) = N {lg(x)|z € M} is a two-
sided ideal of R. M is said to be faithful if Ir(M) = (0). A ring R with a
faithful and irreducible left module is called a left primitive ring. For example,
every matrix ring over a division ring is left primitive.

Corollary 2.2. Let R be a ring. Then

(1) R is reduced if and only if R has a faithful and reduced module if and only
if R has a faithful and q-reduced module.

(2) R is semicommutative if and only if R has a faithful and semicommutative
module.

(8) R is abelian if and only if R has a faithful and abelian module.

Proof. Note that if R is a reduced(resp., semicommutative, abelian) ring, then
rR is both faithful and reduced(resp., semicommutative, abelian).

(1) Since the only if parts are obvious, it suffices to show that if R has a faithful
and g-reduced module, then it is reduced. Let g M be a faithful and g-reduced
R-module. If a € R and a? = 0, then a?M = (0). Since M is g-reduced and
faithful, aM = 0 and hence a = 0.

(2) Let g M be a faithful and semicommutative module. If a, b € R and ab = 0,
then abM = (0). Thus (aRb)M = (0) and so aRb = 0.

(3) Let gM be a faithful and abelian module. If e = €2, r € R, then

(er —re)M = (0). Thus er = re, since M is faithful. O

A ring R is said to be prime if aRb = 0 implies either a = 0 or b = 0.
Primitive rings are prime. For modules over a prime or primitive ring, we have
the following.
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Proposition 2.3. Let R be a prime ring. Then the following are equivalent.
(1) R is a domain.

(2) There is a faithful module rp M which is reduced.

(3) There is a faithful module g M which is q-reduced.

(4) There is a faithful module RM which is semicommutative.

Proof. (1) = (2) If R is a domain, then gR is a faithful and reduced R-module.
(2) = (3) and (2) = (4) are by Lemma 1.2(1).

(3) = (1) Suppose g M is a faithful and g-reduced module. If ab = 0 (a, b € R),
then (bRa)?M = 0. Since gM is g-reduced, we have (bRa)M = 0. Thus
bRa=0,s0a=0o0rb=0.

(4) = (1) Suppose g M is a faithful and semicommutative module. If a, b € R
such that ab = 0, then a(bM) = (ab)M = 0. Thus, (aRb)M = aR(bM) =0
since M is semicommutative. This implies aRb=0and soa=0o0or b=0. O

Lemma 2.4. Let gM be a faithful and irreducible module. If M is q-reduced
or semicommutative, then lg(x) =0 for all0 # x € M.

Proof. Case 1. Suppose gM is g-reduced. Assume on the contrary that I =
Ir(z) # (0) for some 0 # x € M. Since gM is faithful and irreducible, [y = M
for some y € M. Now x € M = Iy, so x = ay for some a € I = [g(x). Since
M is g-reduced and a?y = axr = 0, we have x = ay = 0 , contradiction. So
Ir(z) = (0) for all 0 # =z € M.

Case 2. Suppose rpM is semicommutative and 0 # = € M, a € [r(z). Then
ax = 0, and hence aM = a(Rz) = aRx = (0). Hence a = 0. O

Theorem 2.5. Let R be a left primitive ring with a faithful and irreducible
module M. Then the following are equivalent.

(1) R is a division ring.

(2) M is reduced.

(3) M is q-reduced.

(4) M is semicommutative.

Proof. (1) = (2) = (3) and (1) = (2) = (4) are obvious, since a vector space
over a division ring is a reduced module.

(3) = (1) and (4) = (1). Let 0 # a € R; then ax # 0 for some 0 # z € M. So
M = Rax, hence x = bax for some b € R. Now 1 —ba € [g(z) = (0). Therefore
ba =1 and so R is a division ring. O

By left-right symmetry, we have the following.
Corollary 2.6. For a ring R, the following are equivalent.

(1) R is a division ring.
(2) R has a faithful and irreducible right R-module which is reduced.
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(8) R has a faithful and irreducible right R-module which is g-reduced.
(4) R has a faithful and irreducible right R-module which is semicommutative.

3. Modules over strongly regular rings

In this section, we prove that a ring R is strongly regular if and only if
every left(or right) R-module is reduced. A ring R is (von Neumann) regular
if for each a € R, a = aba for some b € R. R is strongly regular if for each
a € R, a = ba® for some b € R. It is well-known that R is strongly regular if
and only if it is abelian and regular [3, Theorem 3.5].

Note that a left R-module M is flat if the tensor functor —® g M is left exact.

Theorem 3.1. For a ring R, the following are equivalent.
(1) R is regular.
(2) Every left R-module is flat.

Proof. See [4, Proposition 5.4.4]. O

Lemma 3.2. Let R be a strongly regular ring. Then

(1) For each a € R, there exists a unique element b € R such that ab = ba, and
a = a?b = ba®. Moreover, ab is a central idempotent.

(2) R is reduced.

(3) R is left duo.

Proof. (1) See [1, Lemma 1]. (2) Let a € R with a®> = 0. Choose b € R such
that a = ba?, hence a = ba? = 0 and R is reduced.

(3) Let I be a left ideal of R and a € I, r € R. Choose b € R such that a = ba?,
and ab = ba is central. Then ar = (ba?)r = (ba)(ar) = (ar)(ba) € I, so I is an
ideal. O

Next theorem is a main result of this article.

Theorem 3.3. For a ring R, the following are equivalent.
(1) R is strongly reqular.

(2) Every left R-module is reduced.

(8) Every left R-module is q-reduced.

(4) Every principal left R-module is q-reduced.

Proof. (1) = (2) Suppose that R is strongly regular. First we claim that every
left R-module is ¢-reduced. To see this let M be a left R-module and a?z = 0
for a € R and x € M. Then az = (ba?)z = b(a?x) = 0 for some b € R, and
hence rM is a g-reduced module. Now R is left duo by Lemma 3.2(3), so every
left R-module is semicommutative. Therefore every left R-module is reduced.
(2) = (3) = (4) are obvious.

(4) = (1) For a € R, let M = R/Ra® and * = 1 + Ra®> € M. Then M
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is principal, hence is a g—reduced left R-module by assumption (4). Since

a’z = 0, we have ax = 0. This implies that a € Ra?, hence a = ba? for some

be R O
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