• 제목/요약/키워드: real-valued function

검색결과 89건 처리시간 0.038초

ON THE LEBESGUE SPACE OF VECTOR MEASURES

  • Choi, Chang-Sun;Lee, Keun-Young
    • 대한수학회보
    • /
    • 제48권4호
    • /
    • pp.779-789
    • /
    • 2011
  • In this paper we study the Banach space $L^1$(G) of real valued measurable functions which are integrable with respect to a vector measure G in the sense of D. R. Lewis. First, we investigate conditions for a scalarly integrable function f which guarantee $f{\in}L^1$(G). Next, we give a sufficient condition for a sequence to converge in $L^1$(G). Moreover, for two vector measures F and G with values in the same Banach space, when F can be written as the integral of a function $f{\in}L^1$(G), we show that certain properties of G are inherited to F; for instance, relative compactness or convexity of the range of vector measure. Finally, we give some examples of $L^1$(G) related to the approximation property.

A Note on the Pettis Integral and the Bourgain Property

  • Lim, Jong Sul;Eun, Gwang Sik;Yoon, Ju Han
    • 충청수학회지
    • /
    • 제5권1호
    • /
    • pp.159-165
    • /
    • 1992
  • In 1986, R. Huff [3] showed that a Dunford integrable function is Pettis integrable if and only if T : $X^*{\rightarrow}L_1(\mu)$ is weakly compact operator and {$T(K(F,\varepsilon))|F{\subset}X$, F : finite and ${\varepsilon}$ > 0} = {0}. In this paper, we introduce the notion of Bourgain property of real valued functions formulated by J. Bourgain [2]. We show that the class of pettis integrable functions is linear space and if lis bounded function with Bourgain property, then T : $X^{**}{\rightarrow}L_1(\mu)$ by $T(x^{**})=x^{**}f$ is $weak^*$ - to - weak linear operator. Also, if operator T : $L_1(\mu){\rightarrow}X^*$ with Bourgain property, then we show that f is Pettis representable.

  • PDF

METRIZATION OF THE FUNCTION SPACE M

  • Lee, Joung-Nam;Yang, Young-Kyun
    • Journal of applied mathematics & informatics
    • /
    • 제11권1_2호
    • /
    • pp.391-399
    • /
    • 2003
  • Let (X,S,$\mu$) be a measure space and M be the vector space of all real valued S-measurable functions defined on (X,S,$\mu$). For $E\;{\in}\;S$ with $\mu(E)\;<\;{\infty}$, $d_E$ is a pseudometric on M. With the notion of D = {$d_E$\mid$E\;{\in}\;S,\mu(E)\;<\;{\infty}$}, in this paper we investigate some topological structure T of M. Indeed, we shall show that it is possible to define a complete invariant metric on M which is compatible with the topology T on M.

Power Flow Solution Using an Improved Fitness Function in Genetic Algorithms

  • Seungchan Chang;Lim, Jae-Yoon;Kim, Jung-Hoon
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권5호
    • /
    • pp.51-59
    • /
    • 1997
  • This paper presets a methodology of improving a conventional model in power systems using Genetic Algorithms(GAs) and suggests a GAs-based model which can directly solve the real-valued optimum in an optimization procedure. In applying GAs to the power flow, a new fitness mapping method is proposed using the proposed using the probability distribution function for all the payoffs in the population pool. In this approach, both the notions on a way of the genetic representation, and a realization of the genetic operators are fully discussed to evaluate he GAs' effectiveness. The proposed method is applied to IEEE 5-bus, 14-bus and 25-bus systems and, the results of computational experiments suggest a direct applicability of GAs to more complicated power system problems even if they contain nonlinear algebraic equations.

  • PDF

Sequential confidence intervals for the mean with $\beta$-protection in a certain parameter space

  • Kim, Sung-Lai
    • Journal of the Korean Statistical Society
    • /
    • 제19권2호
    • /
    • pp.113-121
    • /
    • 1990
  • Let ${X_n : n=1,2,\cdots}$ be iid random variables with distribution $P_{\theta}, \theta \in H$ where $H$ is some abstract parameter space. We consider a sequential confidence interval I for the mean $\mu = \mu(\theta)$ of $P_{\theta}$ satisfying $P_{\theta}(\mu \in I) \geq 1-\alpha$ and $P_{\theta}(\mu-\delta(\mu) \in I) \leq \beta$ for all $\theta \in H$ for any given an imprecision real valued function $\delta(\mu) > 0$ and error probabilities $0 < \alpha, \beta < 1$. A one-sided sequential confidence interval is constructed under some restriction of the family {P_{\theta} : \theta \in H}$ and the imprecision function $\delta$. This is extended to the two-sided cases.

  • PDF

A GENERALIZED SIMPLE FORMULA FOR EVALUATING RADON-NIKODYM DERIVATIVES OVER PATHS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.609-631
    • /
    • 2021
  • Let C[0, T] denote a generalized analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. Define $Z_{\vec{e},n}$ : C[0, T] → ℝn+1 by $$Z_{\vec{e},n}(x)=\(x(0),\;{\int}_0^T\;e_1(t)dx(t),{\cdots},\;{\int}_0^T\;e_n(t)dx(t)\)$$, where e1,…, en are of bounded variations on [0, T]. In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function $Z_{\vec{e},n}$ which has an initial weight and a kind of drift. As applications of the formula, we evaluate the Radon-Nikodym derivatives of various functions on C[0, T] which are of interested in Feynman integration theory and quantum mechanics. This work generalizes and simplifies the existing results, that is, the simple formulas with the conditioning functions related to the partitions of time interval [0, T].

AN EVALUATION FORMULA FOR A GENERALIZED CONDITIONAL EXPECTATION WITH TRANSLATION THEOREMS OVER PATHS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제57권2호
    • /
    • pp.451-470
    • /
    • 2020
  • Let C[0, T] denote an analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. For a partition 0 = t0 < t1 < ⋯ < tn < tn+1 = T of [0, T], define Xn : C[0, T] → ℝn+1 by Xn(x) = (x(t0), x(t1), …, x(tn)). In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function Xn which has a drift and does not contain the present position of paths. As applications of the formula with Xn, we evaluate the Radon-Nikodym derivatives of the functions ∫0T[x(t)]mdλ(t)(m∈ℕ) and [∫0Tx(t)dλ(t)]2 on C[0, T], where λ is a complex-valued Borel measure on [0, T]. Finally we derive two translation theorems for the Radon-Nikodym derivatives of the functions on C[0, T].

Seismic response of soil-structure interaction using the support vector regression

  • Mirhosseini, Ramin Tabatabaei
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.115-124
    • /
    • 2017
  • In this paper, a different technique to predict the effects of soil-structure interaction (SSI) on seismic response of building systems is investigated. The technique use a machine learning algorithm called Support Vector Regression (SVR) with technical and analytical results as input features. Normally, the effects of SSI on seismic response of existing building systems can be identified by different types of large data sets. Therefore, predicting and estimating the seismic response of building is a difficult task. It is possible to approximate a real valued function of the seismic response and make accurate investing choices regarding the design of building system and reduce the risk involved, by giving the right experimental and/or numerical data to a machine learning regression, such as SVR. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The results show that the performance of the technique can be predicted by reducing the number of real data input features. Further, performance enhancement was achieved by optimizing the RBF kernel and SVR parameters through grid search.

Common Fixed Point Theorems of Commuting Mappinggs

  • Park, Wee-Tae
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제26권1호
    • /
    • pp.41-45
    • /
    • 1987
  • In this paper, we give several fixed point theorems in a complete metric space for two multi-valued mappings commuting with two single-valued mappings. In fact, our main theorems show the existence of solutions of functional equations f($\chi$)=g($\chi$)$\in$S$\chi$∩T$\chi$ and $\chi$=f($\chi$)=g($\chi$)$\in$S$\chi$∩T$\chi$ under certain conditions. We also answer an open question proposed by Rhoades-Singh-Kulsherestha. Throughout this paper, let (X, d) be a complete metric space. We shall follow the following notations : CL(X) = {A; A is a nonempty closed subset of X}, CB(X)={A; A is a nonempty closed and founded subset of X}, C(X)={A; A is a nonempty compact subset of X}, For each A, B$\in$CL(X) and $\varepsilon$>0, N($\varepsilon$, A) = {$\chi$$\in$X; d($\chi$, ${\alpha}$) < $\varepsilon$ for some ${\alpha}$$\in$A}, E$\sub$A, B/={$\varepsilon$ > 0; A⊂N($\varepsilon$ B) and B⊂N($\varepsilon$, A)}, and (equation omitted). Then H is called the generalized Hausdorff distance function fot CL(X) induced by a metric d and H defined CB(X) is said to be the Hausdorff metric induced by d. D($\chi$, A) will denote the ordinary distance between $\chi$$\in$X and a nonempty subset A of X. Let R$\^$+/ and II$\^$+/ denote the sets of nonnegative real numbers and positive integers, respectively, and G the family of functions ${\Phi}$ from (R$\^$+/)$\^$s/ into R$\^$+/ satisfying the following conditions: (1) ${\Phi}$ is nondecreasing and upper semicontinuous in each coordinate variable, and (2) for each t>0, $\psi$(t)=max{$\psi$(t, 0, 0, t, t), ${\Phi}$(t, t, t, 2t, 0), ${\Phi}$(0, t, 0, 0, t)} $\psi$: R$\^$+/ \longrightarrow R$\^$+/ is a nondecreasing upper semicontinuous function from the right. Before sating and proving our main theorems, we give the following lemmas:

  • PDF

ON FARTHEST POINTS IN METRIC SPACES

  • Narang, T.D.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2002
  • For A bounded subset G of a metric Space (X,d) and $\chi \in X$, let $f_{G}$ be the real-valued function on X defined by $f_{G}$($\chi$)=sup{$d (\chi, g)\in:G$}, and $F(G,\chi)$={$z \in X:sup_{g \in G}d(g,z)=sup_{g \in G}d(g,\chi)+d(\chi,z)$}. In this paper we discuss some properties of the map $f_G$ and of the set $ F(G, \chi)$ in convex metric spaces. A sufficient condition for an element of a convex metric space X to lie in $ F(G, \chi)$ is also given in this pope.

  • PDF