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ON THE LEBESGUE SPACE OF VECTOR MEASURES

Changsun Choi and Keun Young Lee

Abstract. In this paper we study the Banach space L1(G) of real val-
ued measurable functions which are integrable with respect to a vector

measure G in the sense of D. R. Lewis. First, we investigate conditions
for a scalarly integrable function f which guarantee f ∈ L1(G). Next,
we give a sufficient condition for a sequence to converge in L1(G). More-

over, for two vector measures F and G with values in the same Banach
space, when F can be written as the integral of a function f ∈ L1(G), we
show that certain properties of G are inherited to F ; for instance, relative
compactness or convexity of the range of vector measure. Finally, we give

some examples of L1(G) related to the approximation property.

1. Introduction

Integration of real valued measurable functions with respect to Banach space
valued countably additive vector measures was introduced and studied by Lewis
in [7] and [8]. The Banach space L1(G) of real valued measurable functions
integrable with respect to a Banach space valued countably additive vector
measure G was studied from the aspect of Banach lattice by Curbera in [1],
[2] and [3]. In particular, Curbera characterized L1(G) as order continuous
Banach lattices with weak order unit.

In this paper we focus on different aspects of L1(G). Let X be a Banach
space and G be a X-valued countably additive vector measure. After fixing
notation and definitions in Preliminaries, we study in Section 3 conditions for
a scalarly integrable function f which guarantee f ∈ L1(G).

In Section 4 we consider the convergence in L1(G) and for an integrable
function f the induced vector measure F given by the integration

F (E) =

∫
E

fdG.

We give a sufficient condition for a sequence which guarantees the convergence
in L1(G). Then this result improves Lewis’s results. And, as a consequence
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of the Orlicz-Pettis theorem, the induced vector measure F turns out to be a
countably additive vector measure. Now, assuming that F is induced in the
above fashion, we show that if G has a relatively compact range, then so does F .
In the same vein we prove that if G satisfies the Lyapunov convexity theorem,
then so does F .

In the final section we consider the approximation property for L1(G). We
give some examples; we illustrate these examples using Szakowski’s counterex-
ample of a Banach lattice which lacks in the compact approximation property.

2. Preliminaries

Throughout this paper by X and Y we denote real Banach spaces. By BX

we mean the closed unit ball of X and X∗ is the dual of X. For a measurable
space (Ω,Σ) and a countably additive vector measure G : Σ → X we define its
semivariation ∥G∥ by

∥G∥(E) = sup
x∗∈BX∗

|x∗G|(E).

Here |x∗G| is the variation of the signed measure x∗G. It is well-known that
∥G∥(Ω) < ∞, ∥G∥ is monotone and subadditive; refer to [5]. Let’s denote by
ca(Σ) the set of signed measures λ : Σ → R. Nikodym’s convergence theorem
states that if (µn) is a sequence from ca(Σ) for which

lim
n→∞

µn(E) = µ(E)

exists for each E ∈ Σ, then µ ∈ ca(Σ); refer to [4]. Recall that ca(Σ) is a Banach
space if we define ∥λ∥ = |λ|(Ω). By λ ∈ ca+(Σ), we mean that λ : Σ → [0,∞)
is a finite countably additive measure. G : Σ → X is a weakly countably
additive vector measure if for each x∗ ∈ X∗, x∗G is a signed measure. Orlicz-
Pettis theorem states that a weakly countably additive vector measure on Σ is
countably additive; refer to [5, Corollary I.4.4]. If G : Σ → X is a countably
additive vector measure, then {G(E) : E ∈ Σ} is relatively weakly compact;
refer to [5, Corollary I.3.7].

For two vector measures F : Σ → X and G : Σ → Y we say that F is
absolutely continuous with respect to G, in symbol F ≪ G, if given ε > 0 there
is δ > 0 such that ∥F (E)∥ < ε whenever E ∈ Σ and ∥G∥(E) < δ. If F : Σ → X
is a countably additive vector measure and λ ∈ ca(Σ)+, then it is known that
F ≪ λ if and only if F (E) = 0 whenever λ(E) = 0. Vitali-Hahn-Saks theorem
states that if µ is a finitely additive nonnegative real-valued measure on Σ and
(Fn) is a sequence of X-valued µ-continuous vector measures on Σ such that
limn→∞ Fn(E) exists for each E ∈ Σ, then

lim
µ(E)→0

Fn(E) = 0

uniformly in n; refer to [5]. A Rybakov control measure for G is a measure of
the form |x∗G| such that G ≪ |x∗G|. If G : Σ → X is a countably additive
vector measure, then, according to the famous theorem of Rybakov, G has a
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Rybakov control measure. Moreover, if |x∗
0G| is a Rybakov control measure for

G and x∗ ∈ X∗, then all |{αx∗ + (1 − α)x∗
0}G| are Rybakov control measures

for G except for countably many α ∈ R; refer to [13].
Following D. R. Lewis [7] we define the Lebesgue space L1(G) by the set of

measurable functions f : Ω → R such that
(i)

∫
Ω
|f |d|x∗G| < ∞ for each x∗ ∈ X∗ (scalarly integrable); and

(ii) for each E ∈ Σ there is a vector in X, denoted by
∫
E
fdG, satisfying

x∗
∫
E

fdG =

∫
E

fdx∗G

for all x∗ ∈ X∗. We regard two functions f and g in L1(G) equal if there is
E ∈ Σ such that ∥G∥(E) = 0 and f = g on Ec. We endow each f ∈ L1(G)
with its norm

∥f∥L1(G) = sup
∥x∗∥≤1

∫
Ω

|f |d|x∗G|.

It is well known that ∥f∥L1(G) < ∞ for all f ∈ L1(G). For a quicker way of
checking this observe that ∥f∥L1(G) ≤ 2∥f∥ where

∥f∥ = sup
E∈Σ

∥∥∥∫
E

fdG
∥∥∥.

And by the Orlicz-Pettis theorem the vector measure E →
∫
E
fdG is countably

additive, hence it is bounded.
In [1] Curbera shows that L1(G) is an order continuous Banach lattice with

weak order unit over (Ω,Σ, µ) for any Rybakov control measure µ for G. In
particular, from the order continuity it follows that the simple functions are
dense in L1(G).

3. Scalarly integrable functions

In Preliminaries, we observed that ∥f∥L1(G) < ∞ if f ∈ L1(G). Stefansson
proved that ∥f∥L1(G) < ∞ if f is scalarly integrable only; refer to [14]. We
reprove the same result independently. We start this section by showing the
following definition.

Definition 3.1. Let f : Ω → R be measurable with respect to Σ. We define a
space M(f) of set functions as follows. For each k ∈ N write Ωk = {ω ∈ Ω :
|f(ω)| > 1

k} and put Σk = {Ωk ∩ E : E ∈ Σ}. We let M(f) be the set of all
set functions λ :

∪∞
k=1 Σk → R such that λ ↾ Σk ∈ ca(Σk) for all k ∈ N and

sup
k≥1

∫
Ωk

|f |d|λ| < ∞.

Observe that in the above integral we adapted the convention of writing λ
in place of λ ↾ Σk. We endow each λ ∈ M(f) with its norm

∥λ∥ = sup
k≥1

∫
Ωk

|f |d|λ|.
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It is easy to check that ∥ · ∥ is a norm.
On our way to the proof of completeness of M(f) we will need the following

type of Fatou’s lemma.

Lemma 3.2. If µ, µn ∈ ca+(Σ) for n = 1, 2, . . . and µ(E) = limn→∞ µn(E)
for each E ∈ Σ, then for each measurable g : Ω → [0,∞), we have

∫
Ω
gdµ ≤

lim infn→∞
∫
Ω
gdµn.

Proof. We observe that for each simple φ,
∫
Ω
φdµ = limn→∞

∫
Ω
φdµn.

We recall that
∫
Ω
gdµ = sup0≤φ≤g

∫
Ω
φdµ where φ’s are simple measurable

functions. Since µn is a nonnegative measure, for each 0 ≤ φ ≤ g and n ∈ N,
we have ∫

Ω

φdµn ≤
∫
Ω

gdµn.

Hence
∫
Ω
φdµ ≤ lim infn→∞

∫
Ω
gdµn and

∫
Ω

gdµ ≤ lim infn→∞
∫
Ω
gdµn. □

Theorem 3.3. The space M(f) is a Banach space.

Proof. Let (λn) be a Cauchy sequence in M(f). Then given ε > 0, there is
n0 ∈ N such that if n,m ≥ n0, then supk

∫
Ωk

|f |d|λn − λm| < ε. For each k∫
Ωk

|f |d|λn − λm| ≥ 1

k
|λn − λm|(Ωk),

hence (λn ↾ Σk) is a Cauchy sequence in ca(Σk). Since ca(Σk) is a Banach space,
we obtain λk in ca(Σk) such that λn ↾ Σk converges to λk in ca(Σk), hence
λk(E) = limn→∞ λn(E) for all E ∈ Σk. Then we can define λ :

∪∞
k=1 Σk → R

by putting λ = λk on Σk. Since any Cauchy sequence is bounded, there is
M > 0 such that for all n, supk

∫
Ωk

|f |d|λn| ≤ M . Now we check that λn → λ in

M(f). Since for each k and a fixed n ≥ n0, limm→∞ |λn−λm|(E) = |λn−λ|(E)
for all E ∈ Σk, we have, by virtue of Lemma 3.2, that

∫
Ωk

|f |d|λn − λ| ≤
lim infm

∫
Ωk

|f |d|λn−λm| ≤ ε for all k. Hence if n ≥ n0, then supk
∫
Ωk

|f |d|λn−
λ| ≤ ε. So, supk

∫
Ωk

|f |d|λ| ≤
∫
Ωk

|f |d|λ− λn0 |+
∫
Ωk

|f |d|λn0 | < ε +M . That

is, λ ∈ M(f) and λn → λ in M(f). □

Corollary 3.4. If
∫
Ω
|f |d|x∗G| < ∞ for all x∗ ∈ X∗, then

sup
∥x∗∥≤1

∫
Ω

|f |d|x∗G| < ∞.

Proof. By the assumption, for all x∗ ∈ X∗, we have

sup
k≥1

∫
Ωk

|f |d|x∗G| =
∫
Ω

|f |d|x∗G| < ∞,

hence x∗G ∈ M(f). So we can define an operator T : X∗ → M(f) by T (x∗) =
x∗G. Clearly T is a linear operator. It is enough to show that T is bounded.
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Suppose x∗
n → x∗ inX∗ and Tx∗

n → λ inM(f). Then supk
∫
Ωk

|f |d|x∗
nG−λ| →

0. So for each k, |x∗
nG− λ|(Ωk) → 0 and

λ(E) = lim
n→∞

x∗
nG(E)

for all E ∈ Σk. On the other hand x∗G(E) = limn→∞ x∗
nG(E) for all E ∈ Σk.

Hence we obtain λ = x∗G on Σk for each k. So λ = x∗G on
∪

k Σk. By the
Closed Graph Theorem T is bounded. □

The following corollary is just Proposition 2 in [14]. We provide our proof.

Corollary 3.5. Let µ ∈ ca+(Σ) such that G ≪ µ. Suppose that
∫
Ω
|f |d|x∗G| <

∞ for all x∗ ∈ X∗. Define S : X∗ → L1(µ) by Sx∗ = f · dx∗G
dµ . Then S is a

bounded linear operator.

Proof. Since G ≪ µ, for each x∗ ∈ X∗, we have that x∗G ≪ µ, hence the

Radon-Nikodym derivative dx∗G
dµ ∈ L1(µ) and d|x∗G|

dµ = |dx
∗G

dµ |. Thus∫
Ω

|Sx∗|dµ =

∫
Ω

|f |
∣∣∣dx∗G

dµ

∣∣∣dµ =

∫
Ω

|f |d|x
∗G|
dµ

dµ

=

∫
Ω

|f |d|x∗G| < ∞,

which shows that Sx∗ ∈ L1(µ). In view of Corollary 3.4 we obtain that

sup
∥x∗∥≤1

∫
Ω

|Sx∗|dµ = sup
∥x∗∥≤1

∫
Ω

|f |d|x∗G| < ∞.

This proves our corollary. □
Theorem 3.6. Suppose that

∫
Ω
|f |d|x∗G| < ∞ for all x∗ ∈ X∗. Let µ ∈

ca+(Σ) such that G ≪ µ. Let S : X∗ → L1(µ) be the operator given by

Sx∗ = f · dx∗G
dµ as in Corollary 3.5. Then the following are equivalent:

(a) f ∈ L1(G).
(b) S is weak∗-weak continuous.
(c) There is g ∈ L1(G) such that

∫
Ω
|f |d|x∗G| ≤

∫
Ω
|g|d|x∗G| for each x∗ ∈

X∗.

Proof. (a) ⇔ (b) It is a known result proved by Stefansson in [14, Theorem 4].
Clearly (a) implies (c) with g = f . It remain to check that (c) implies (a).
Fix E ∈ Σ and consider

∫
E
fdG : X∗ → R given by (

∫
E
fdG)x∗ =

∫
E
fdx∗G.

Then we have
∫
E
fdG ∈ X∗∗. We claim that

∫
E
fdG ∈ 2QW in X∗∗, where

W = co{±
∫
A
gdG : A ∈ Σ} and Q : X → X∗∗ is the canonical embedding.

Since A →
∫
A
gdG is countably additive, we have that W is weakly compact.

Hence QW is weak∗ compact inX∗∗. If
∫
E
fdG /∈ 2QW , then by the separation

theorem we have an x∗ ∈ X∗ and α ∈ R such that 2x∗(x) ≤ α < (
∫
E
fdG)x∗

for all x ∈ W . Then one has A ∈ Σ such that∫
Ω

|g|d|x∗G| = x∗
(∫

A

gdG
)
+ x∗

(
−
∫
Ω\A

gdG
)
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≤ α < x∗
(∫

E

fdG
)
≤

∫
Ω

|f |d|x∗G|;

a contradiction. □

4. The convergence in L1(G) and vector measures induced by
integration

Lewis proved the following theorem in his classical paper; refer to [7].

Theorem 4.1. Let (φn) be a sequence in L1(G) which converges pointwise to
f on Ω and g be in L1(G) such that |φn| ≤ |g| for each n. Then we have
f ∈ L1(G) and ∫

E

fdG = lim
n→∞

∫
E

φndG

uniformly for all E ∈ Σ.

By the above theorem, we observe that (φn) converges to f in L1(G) under
the hypotheses of Theorem 4.1. That is, Theorem 4.1 gives a sufficient condition
which guarantees convergence in L1(G). The following theorem gives a new
sufficient condition which guarantees convergence in L1(G).

Theorem 4.2. Suppose that there exists a sequence (φn) in L1(G) for which
(
∫
E
φndG) is Cauchy for each E ∈ Σ and (φn) is Cauchy in measure with

respect to a Rybakov control measure |x∗
0G|. Then there exists f ∈ L1(G) such

that (φn) converges to f in L1(G).

Proof. First we have that the set function F : Σ → X given by

F (E) = lim
n→∞

∫
E

φndG

defines a countably additive vector measure. Indeed, by the Nikodym conver-
gence theorem, F is a weakly countably additive vector measure. By the Orlicz-
Pettis theorem F is a countably additive vector measure. Since F ≪ G ≪
|x∗

0G|, by the Radon-Nikodym theorem there exists a function f0 ∈ L1(|x∗
0G|)

such that x∗
0F (E) =

∫
E
f0d|x∗

0G| for all E ∈ Σ. Since for each E ∈ Σ,

x∗
0F (E) = lim

n→∞

∫
E

φndx
∗
0G,

it follows that

lim
n→∞

∫
E

φnhd|x∗
0G| =

∫
E

f0d|x∗
0G|

for each E ∈ Σ. Here h is the Radon-Nikodym derivative of x∗
0G with respect to

|x∗
0G|; observe that |h(ω)| = 1 for |x∗

0G|-almost all ω ∈ Ω. So φnh → f0 weakly
in L1(|x∗

0G|). Then {φnh : n ∈ N} is relatively weakly compact in L1(|x∗
0G|),

so {φnh : n ∈ N} is uniformly integrable in L1(|x∗
0G|) and the same with (φn).

In particular, we have

lim
|x∗

0G|(E)→0

∫
E

|φn|d|x∗
0G| = 0
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uniformly on n ∈ N. Since (φn) is Cauchy in measure with respect to |x∗
0G|,

by Vitali’s convergence theorem, there is f ∈ L1(|x∗
0G|) such that φn → f in

L1(|x∗
0G|). Hence φn → f in measure with respect to |x∗

0G|. Now fix x∗ ∈ X∗.
Since |x∗G| ≪ |x∗

0G|, we have φn → f in |x∗G|-measure. Since x∗F ≪ x∗G,
we can check as above that (φn) is uniformly integrable in L1(|x∗G|). Again,
by Vitali’s convergence theorem, we have f ∈ L1(|x∗G|) and

lim
n→∞

∫
Ω

|φn − f |d|x∗G| = 0.

Now let E ∈ Σ and put ∫
E

fdG = lim
n→∞

∫
E

φndG.

Then we have
∫
E
fdx∗G = x∗ ∫

E
fdG for each x∗ ∈ X∗ because φn → f in

L1(|x∗G|) for each x∗ ∈ X∗. Thus we obtain f ∈ L1(G).
Finally we show that (φn) converges to f in L1(G). First, for each m ∈ N,

define Fm on Σ by Fm(E) =
∫
E
φmdG. Then (Fm) is a sequence of X-valued

|x∗
0G|-continuous vector measures on Σ such that limm→∞ Fm(E) exists for

each E ∈ Σ. By Vitali-Hahn-Saks theorem for vector measure (see [5, Corollary
I.4.10]), we obtain that

lim
|x∗

0G|(E)→0
Fm(E) = 0

uniformly in m. Let ε > 0. Then there exists δ > 0 such that ∥Fm(E)∥ < ε
for all m whenever |x∗

0G|(E) < δ. Put En = {ω : |f(ω) − φn| ≥ ε}. Since
φn converges to f in measure with respect to |x∗

0G|, there exists N ∈ N such
that |x∗

0G|(En) < δ whenever n > N . Now take any n > N and E ∈ Σ. Since
|x∗

0G|(E ∩ En) ≤ |x∗
0G|(En) < δ, we have

∥Fm(E ∩ En)∥ < ε

uniformly in m, so ∥F (E ∩ En)∥ ≤ ε. Then we have∣∣∣ ∫
E

(φn − f)dx∗G
∣∣∣ ≤ ∣∣∣ ∫

E\En

(φn − f)dx∗G
∣∣∣+ ∣∣∣ ∫

E∩En

(φn − f)dx∗G
∣∣∣

≤ ε∥G∥(Ω) +
∣∣∣ ∫

E∩En

φndx
∗G

∣∣∣+ ∣∣∣ ∫
E∩En

fdx∗G
∣∣∣

≤ ε∥G∥(Ω) +
∣∣∣x∗(

∫
E∩En

φndG)
∣∣∣+ ∣∣∣x∗(

∫
E∩En

fdG)
∣∣∣

≤ ε∥G∥(Ω) + ∥Fn(E ∩ En)∥+ ∥F (E ∩ En)∥
≤ ε∥G∥(Ω) + 2ε

for all x∗ ∈ BX∗ . Hence we obtain that∫
E

fdG = lim
n→∞

∫
E

φndG
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uniformly for all E ∈ Σ. Thus we conclude that (φn) converges to f in L1(G).
□

Remark 4.3. By the proof of Theorem 4.1, the uniform bounded condition of
a sequence (φn) in Theorem 4.1 implies that (

∫
E
φndG) is Cauchy for each

E ∈ Σ. Then Theorem 4.2 improves Lewis’s result. Moreover, Theorem 4.2
improves [7, Theorem 2.4].

For the next two theorems let’s assume that F and G are two countably
additive vector measures where F is given by the integration with respect to
G; that is, there is f ∈ L1(G) such that

F (E) =

∫
Ω

fdG

for all E ∈ Σ.

Theorem 4.4. If G(Σ) is relatively compact, then F (Σ) is relatively compact.

Proof. In case f = χA, then F (Σ) = {G(E ∩A) : E ∈ Σ} ⊂ G(Σ); hence F (Σ)

is compact. If f =
∑n

i=1 aiχAi is a simple function, then F (Σ) ⊂
∑n

i=1 aiG(Σ)
is compact.

Now let f ∈ L1(G) and ε > 0. Since simple functions are dense in L1(G), we
find a simple function h such that ∥f−h∥L1(G) < ε. If we writeH(E) =

∫
E
hdG,

then

∥F (E)−H(E)∥ = sup
∥x∗∥≤1

∣∣∣ ∫
E

(f − h)dx∗G
∣∣∣ ≤ ∥f − h∥L1(G) < ε.

Thus F (Σ) ⊂ H(Σ)+ εBX where H(Σ) is compact by the previous paragraph.

Thus F (Σ) is compact. □
Theorem 4.5. If {G(E ∩ A) : A ∈ Σ} is weakly compact convex for each
E ∈ Σ, then the same holds for F .

In order to prove Theorem 4.5 we rely on Knowles’s version of the Lyapunov
convexity theorem; see [5], [6] and [10].

Theorem 4.6. Let (Ω,Σ) be a measurable space, X a Banach space and G :
Σ → X a countably additive vector measure. Suppose λ ∈ ca+(Σ) with G ≪ λ.
Then the following are equivalent.

(a) {G(E ∩A) : A ∈ Σ} is weakly compact convex for each E ∈ Σ.
(b) If h ̸= 0 in L∞(λ), then

∫
Ω
ghdG = 0 for some g ∈ L∞(λ) with gh ̸= 0

in L∞(λ).

Proof of Theorem 4.5. First fix a Rabakov control measure λ = |x∗
0G| for G

where ∥x∗
0∥ ≤ 1. Observe that F is a countably additive vector measure and

F ≪ λ.
Assume that {G(E ∩A) : A ∈ Σ} is weakly compact convex for each E ∈ Σ.

In order to show that {F (E ∩ A) : A ∈ Σ} is weakly compact convex for each
E ∈ Σ, we check (b) of Theorem 4.6.
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Let h ̸= 0 in L∞(λ). In view of Theorem 3.6 we have fh ∈ L1(G). In case
fh = 0 λ-a.e. we may take g = χΩ; then gh ̸= 0 in L∞(λ) and∫

Ω

ghdF =

∫
Ω

fghdG = 0.

Now assume that fh ̸= 0 in L∞(λ). Then there exists E ∈ Σ such that
fhχE ∈ L∞(λ) and fhχE ̸= 0 in L∞(λ). We apply Theorem 4.6 to G to
obtain g1 ∈ L∞(λ) such that fhχEg1 ̸= 0 in L∞(λ) but∫

Ω

fhχEg1dG = 0.

Put g = χEg1. Then gh ̸= 0 in L∞(λ) and∫
Ω

ghdF =

∫
Ω

fghdG =

∫
Ω

fhχEg1dG = 0.

This proves Theorem 4.5. □

5. Approximation property of L1(G)

In this section, we consider the approximation property of L1(G). We ask
some questions: Does L1(G) have the approximation property in general? And
if G is a X-valued countably additive vector measure, then are X and L1(G)
the same from the aspect of the approximation property? By illustrating some
examples, we answer these questions.

Definition 5.1. A Banach space X is said to have the approximation property
if for every compact subset K of X and ϵ > 0, there is a finite rank operator
T on X such that ∥Tx− x∥ < ϵ for all x ∈ K.

Since L1(µ) has the approximation property whenever µ is a nonnegative
real valued measure, L1(G) which is order isomorphic to L1(µ) has the ap-
proximation property. But L1(G) does not have the approximation property
in general as the following example shows. For this example we need following
facts.

Theorem 5.2 ([1, Theorem 8]). Let X be an order continuous Banach lattice
with weak order unit. Then there exists a countably additive vector measure G
such that X is order isometric to L1(G).

Theorem 5.3 ([11, Theorem 2.4.15]). If X is a reflexive Banach lattice, then
X has the order continuous norm.

Example 5.4. There exists a countably additive vector measure G such that
L1(G) does not have the approximation property. Thanks to Szankowski there
exists a uniformly convex Banach lattice E with weak order unit which fails
to have the approximation property; refer to [15] or [10, Theorem 1.g.2]. Since
every uniformly convex Banach space is reflexive [9, Proposition 1.e.3], E is a
reflexive Banach lattice. Hence, by Theorem 5.3, E has order continuous norm.
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By Theorem 5.2, there exists a countably additive vector measure G such that
E is order isometric to L1(G). Since E fails to have the approximation property,
L1(G) does not have the approximation property.

The above example gives natural questions: if G is a X-valued vector mea-
sure and L1(G) has the approximation property, then does X have the approx-
imation?, or if X has the approximation property, then does L1(G) have the
approximation property? Unfortunately, we don’t know much about this: we
can give a negative answer for the former and we do not know the answer for
the latter. We need the following theorem; refer to [12].

Theorem 5.5. Let X be an infinite dimensional Banach space. Then there
exists an X-valued countably additive vector measure G with finite variation
which satisfy L1(|G|) = L1(G).

Example 5.6. There exists an X-valued countably additive vector measure G
such that X does not have the approximation property even though L1(G) has
the approximation property. In Example 5.4, there exists a uniformly convex
Banach lattice X with weak order unit which fails to have the approximation
property. By Theorem 5.5, there exists an X-valued countably additive vector
measure G with finite variation which satisfy L1(|G|) = L1(G). Since L1(|G|)
has the approximation property, L1(G) has the approximation property.

Now we give the following problem.

Problem. If G is an X-valued countably additive vector measure and X has
the approximation property, then does L1(G) have the approximation property?

If the above problem had an affirmative answer, then we would have a suffi-
cient condition for a Banach space which guarantees the approximation prop-
erty for L1(G) which is not isomorphic to L1(µ).
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