METRIZATION OF THE FUNCTION SPACE M

  • Published : 2003.01.01

Abstract

Let (X,S,$\mu$) be a measure space and M be the vector space of all real valued S-measurable functions defined on (X,S,$\mu$). For $E\;{\in}\;S$ with $\mu(E)\;<\;{\infty}$, $d_E$ is a pseudometric on M. With the notion of D = {$d_E$\mid$E\;{\in}\;S,\mu(E)\;<\;{\infty}$}, in this paper we investigate some topological structure T of M. Indeed, we shall show that it is possible to define a complete invariant metric on M which is compatible with the topology T on M.

Keywords

References

  1. The elements of integration R. G. Bartle
  2. The eleements of real analysis, (2nd ed.) R. G. Bartle
  3. Toploby and maps T. Husain
  4. M. J. Korea Soc. Math. Educ. v.33 A note on the function space J. N. Lee
  5. Integration and Functional Analysis B. A. Robert;Measure
  6. Real Analysis, (2nd ed) H. L. Royden
  7. Toplogical vector spaces H. H. Schaefer
  8. General Theory of Functions and Integration A. E. Taylor