• Title/Summary/Keyword: radical class

Search Result 63, Processing Time 0.022 seconds

LOWER AND UPPER FORMATION RADICAL OF NEAR-RINGS

  • Saxena, P.K.;Bhandari, M.C.
    • Kyungpook Mathematical Journal
    • /
    • v.19 no.2
    • /
    • pp.205-211
    • /
    • 1979
  • In this paper we continue the study of formation radical (F-radical) classes initiated in [3]. Hereditary and stronger properties of F-radical classes are discussed by giving construction for lower hereditary, lower stronger and lower strongly hereditary F-radical classes containing a given class M. It is shown that the Baer F-radical B is the lower strongly hereditary F-radical class containing the class of all nilpotent ideals and it is the upper radical class with $\{(I,\;N){\mid}N{\in}C,\;N\;is\;prime\}{\subset}SB$ where SB denotes the semisimple F-radical class of B and C is an arbitrary but fixed class of homomorphically closed near-rings. The existence of a largest F-radical class contained in a given class is examined using the concept of complementary F-radical introduced by Scott [5].

  • PDF

On the Sum of Two Radical Classes

  • ZULFIQAR, M.;ASLAM, M.
    • Kyungpook Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.495-497
    • /
    • 2003
  • Let ${\wp}_1$, ${\wp}_2$ be the radical classes of rings. Y. Lee and R. E. Propes have defined their sum by ${\wp}_1+{\wp}_2=\{R{\in}{\omega}:{\wp}_1(R)+{\wp}_2(R)=R\}$. They have shown that ${\wp}_1+{\wp}_2$ is not a radical class in general. In this paper, a few results of Lee and Propes are generalized and also new conditions are investigated under which this sum becomes a radical class.

  • PDF

Polynomial Equation in Radicals

  • Khan, Muhammad Ali;Aslam, Muhammad
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.545-551
    • /
    • 2008
  • Necessary and sufficient conditions for a radical class of rings to satisfy the polynomial equation $\rho$(R[x]) = ($\rho$(R))[x] have been investigated. The interrelationsh of polynomial equation, Amitsur property and polynomial extensibility is given. It has been shown that complete analogy of R.E. Propes result for radicals of matrix rings is not possible for polynomial rings.

LOWER FORMATION RADICAL FOR NEAR RINGS

  • Saxena, P.K.;Bhandari, M.C.
    • Kyungpook Mathematical Journal
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 1978
  • In [7) Scott has defined C-formation radical for a class C of near rings and has studied its porperties under chain conditions. A natural question that arises is: Does there exist a Lower C-Formation radical class L(M) containing a given class M of ideals of near rings in C? In this paper we answer this by giving. two constructions for L(M) and prove that prime radical is hereditary.

  • PDF

A KUROSH-AMITSUR LEFT JACOBSON RADICAL FOR RIGHT NEAR-RINGS

  • Rao, Ravi Srinivasa;Prasad, K.Siva
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.457-466
    • /
    • 2008
  • Let R be a right near-ring. An R-group of type-5/2 which is a natural generalization of an irreducible (ring) module is introduced in near-rings. An R-group of type-5/2 is an R-group of type-2 and an R-group of type-3 is an R-group of type-5/2. Using it $J_{5/2}$, the Jacobson radical of type-5/2, is introduced in near-rings and it is observed that $J_2(R){\subseteq}J_{5/2}(R){\subseteq}J_3(R)$. It is shown that $J_{5/2}$ is an ideal-hereditary Kurosh-Amitsur radical (KA-radical) in the class of all zero-symmetric near-rings. But $J_{5/2}$ is not a KA-radical in the class of all near-rings. By introducing an R-group of type-(5/2)(0) it is shown that $J_{(5/2)(0)}$, the corresponding Jacobson radical of type-(5/2)(0), is a KA-radical in the class of all near-rings which extends the radical $J_{5/2}$ of zero-symmetric near-rings to the class of all near-rings.

LOWER RADICALS OF Γ-RINGS

  • Le Roux, H.J.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.191-195
    • /
    • 1987
  • In this note we introduce the concept of a lower radical for ${\Gamma}$-rings. As an application we also characterise the prime radical introduced by Barnes [1] as a lower radical. Furthermore it is shown that the prime radical can also be determined by the class of all semiprime ${\Gamma}$-rings.

  • PDF

ON THE EXTENSION DIMENSION OF MODULE CATEGORIES

  • Peng, Yeyang;Zhao, Tiwei
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1389-1406
    • /
    • 2020
  • Let Λ be an Artin algebra and mod Λ the category of finitely generated right Λ-modules. We prove that the radical layer length of Λ is an upper bound for the radical layer length of mod Λ. We give an upper bound for the extension dimension of mod Λ in terms of the injective dimension of a certain class of simple right Λ-modules and the radical layer length of DΛ.

A NOTE ON OPTIMIZATION WITH MORSE POLYNOMIALS

  • Le, Cong-Trinh
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.671-676
    • /
    • 2018
  • In this paper we prove that the gradient ideal of a Morse polynomial is radical. This gives a generic class of polynomials whose gradient ideals are radical. As a consequence we reclaim a previous result that the unconstrained polynomial optimization problem for Morse polynomials has a finite convergence.

SYMMETRIC PROPERTY OF RINGS WITH RESPECT TO THE JACOBSON RADICAL

  • Calci, Tugce Pekacar;Halicioglu, Sait;Harmanci, Abdullah
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • Let R be a ring with identity and J(R) denote the Jacobson radical of R, i.e., the intersection of all maximal left ideals of R. A ring R is called J-symmetric if for any $a,b,c{\in}R$, abc = 0 implies $bac{\in}J(R)$. We prove that some results of symmetric rings can be extended to the J-symmetric rings for this general setting. We give many characterizations of such rings. We show that the class of J-symmetric rings lies strictly between the class of symmetric rings and the class of directly finite rings.