Kyungpook Math. J. Volume 27, Number 2 December, 1987

LOWER RADICALS OF *T*-RINGS

By H.J. Le Roux

Abstract: In this note we introduce the concept of a lower radical for Γ -rings. As an application we also characterise the prime radical introduced by Barnes [1] as a lower radical. Furthermore it is shown that the prime radical can also be determined by the class of all semiprime Γ -rings.

1. Preliminaries

In this note we consider only the Γ -rings in the sense of Barnes [1]. A class R of Γ -rings (fixed Γ) is called a radical class if R satisfies:

(A) R is homomorphically closed.

(B) If every nonzero homomorphic image of a Γ -ring has at least one nonzero R-ideal, then the Γ -ring itself belongs to R.

The unique maximal *R*-ideal of a Γ -ring *M*, denoted by R(M), is called the *R*-radical of *M* and R(M/R(M))=0. A Γ -ring *M* is called *R*-semisimple if R(M)=0. SR will denote the class of all *R*-semisimple Γ -rings.

Furthermore we say that a class A of Γ -rings is hereditary if $M \Subset A$ and I an ideal of M (denoted by $I \triangleleft M$), implies that $I \Subset A$. If A is a hereditary class of Γ -rings, then

 $UA = \{ \Gamma \text{-rings } M \mid M/I \Subset A \text{ for every } M \neq I \triangleleft M \}$

is a radical class, called the upper radical class determined by A.

Let M be a Γ -ring. $Q \triangleleft M$ is called a prime ideal of M if for $A, B \triangleleft M$ and $A\Gamma B \subseteq Q$, implies $A \subseteq Q$ or $B \subseteq Q$. Q is called a semiprime ideal of M if for $U \triangleleft M$ and $U\Gamma U \subseteq Q$, implies $U \subseteq Q$. M is called a prime (semiprime) Γ -ring if 0 is a prime (semiprime) ideal of M.

An element *a* of a Γ -ring *M* is nil if $a(\Gamma a)^n = 0$, $n \in \mathbb{N}$. *M* is nil if every element of *M* is nil. $S \subseteq M$ is called nilpotent if $S(\Gamma S)^n = 0$, $n \in \mathbb{N}$. *S* is called zero if $S\Gamma S = 0$.

A Γ -ring M is called a simple zero ring if $M\Gamma M=0$ and M and 0 are the only two ideals of M. M is called a simple prime ring if $M\Gamma M=M$ and M and 0 are the only two ideals of M.

AMS (MOS) classification: 16A78, 16A48 and 16A21

A class A of Γ -rings is called a special (weakly special) class if A satisfies (a) A consists of prime (semiprime) Γ -rings.

(b) A is hereditary.

(c) A is essentially closed i.e. for a Γ -ring M, I an essential ideal in M and $I \subseteq A$, implies that $M \subseteq A$.

If R=UA where A is a special (weakly special) class, then R is called a special (weakly special) radical. A radical class is called supernilpotent if it is hereditary and contains all the nilpotent Γ -rings.

2. The lower radical class for T-rings

DEFINITION 2.1. Let **B** be a nonempty class of Γ -rings such that **B** is homomorphically closed. Define $B=B_1$. Assuming that B_t has been defined for every ordinal $1 \leq t < v$, we define B_v to be the class of all Γ -rings M such that every nonzero homomorphic image of M contains a nonzero ideal $I \in B_t$ for some t < v.

The proofs of the following two lemmas are minor modifications of the proofs of the corresponding theorems in ordinary ring theory, and will be omitted.

LEMMA 2.2. If $LB = \bigcup_{t} B_{t}$, then LB is a radical class, and it is the smallest radical class containing B.

LEMMA 2.3. If B is a hereditary, homomorphically closed class of rings, then LB is hereditary.

LB is called the lower radical class determined by B. Let $Q \triangleleft I \triangleleft M$ where M is a Γ -ring. In [2] it was shown that $\overline{Q}\Gamma \overline{Q}\Gamma \overline{Q} \subseteq Q$ where $\overline{Q} = Q + Q\Gamma M + M\Gamma Q + M\Gamma Q\Gamma M$, is the ideal of M generated by Q. This result can be considered as Andrunakievic's lemma for Γ -rings. Before we give a concrete application, we need the following two lemmas.

LEMMA 2.4. Let A be a hereditary, homomorphically closed class of Γ -rings which contains all the zero rings. Then $LA=A_2$.

PROOF. Let $M \in A_3$. Every nonzero homomorphic image M' of M has a nonzero ideal $I \in A_3$. Since $I \in A_3$, every nonzero homomorphic image of I (hence

192

I itself) has a nonzero ideal $B \subseteq A_1 = A$. Let \overline{B} be the ideal of M' generated by B.

Furthermore $B \triangleleft \overline{B} \triangleleft M'$. From Andrunakievic's lemma we have $\overline{B}\Gamma \overline{B}\Gamma \overline{B} \subseteq B \subseteq A$. Since A is hereditary, we have $\overline{B}\Gamma \overline{B}\Gamma \overline{B} \subseteq A$. If $\overline{B}\Gamma \overline{B} = 0$, then $\overline{B} \in A$ since A contains all the zero rings. If $\overline{B}\Gamma \overline{B} \neq 0$, but $\overline{B}\Gamma \overline{B}\Gamma \overline{B} = 0$, then $\overline{B}\Gamma \overline{B}\Gamma \overline{B} = 0$, so that $\overline{B}\Gamma \overline{B}$ is a nonzero zero ring and hence $\overline{B}\Gamma \overline{B} \subseteq A$. If $\overline{B}\Gamma \overline{B}\Gamma \overline{B} \neq 0$, then M' contains a nonzero ideal in A. So, in any case, M' contains a nonzero ideal in A. Therefore $M \subseteq A_2$ and hence $A_3 = A_2$. So $LA = A_2$.

If K is the class of all nilpotent Γ -rings, it is easy to verify that K satisfies the conditions of the previous lemma. Therefore, we have.

LEMMA 2.5. Let K be the class of all the nilpotent Γ -rings. Then $LK = K_{2}$.

3. Application to the prime radical of Γ -rings

In order to give an application of the lower radical construction of Γ -rings, we will show that $L = \{All \text{ nilpotent } \Gamma\text{-rings}\} = UP = UC$, where $P = \{All \text{ prime } \Gamma\text{-rings}\}$ and $C = \{All \text{ semiprime } \Gamma\text{-rings}\}$.

First, however, we need the following two lemmas.

LEMMA 3.1. Let S be a semiprime ideal of the Γ -ring M.

(i) $A \Gamma B \subseteq S$ if and only if $B \Gamma A \subseteq S$, for any ideals A and B of M.

(ii) $A(\Gamma B)^n \subseteq S$ if and only if $A\Gamma B \subseteq S$, for any ideals A and B of M and $n \in IN$.

PROOF. (i) $A\Gamma B \subseteq S$ implies $B\Gamma A\Gamma B\Gamma A \subseteq B\Gamma S\Gamma A \subseteq S\Gamma A \subseteq S$. Since S is a semiprime ideal, we have $B\Gamma A \subseteq S$.

The converse can be proved in a similar way.

(ii) If $A \cap B \subseteq S$, it follows that $A(\cap B)^n \subseteq S$ for any $n \in IN$.

Conversely, let $A(\Gamma B)^n \subseteq S$. If n=1, then $A\Gamma B \subseteq S$. So, suppose n > 1, then $\implies ([B\Gamma]^{n-1}A\Gamma B) \Gamma \{[B\Gamma]^{n-1}A\Gamma B\} \subseteq S$

 $\implies [B\Gamma]^{n-1}A\Gamma B \subseteq S$ since S is semiprime

 $\implies \quad \left\{ \left[B\Gamma \right]^{n-1}A \right\} \Gamma \left\{ \left[B\Gamma \right]^{n-1}A \right\} \subseteq S$

 $\implies [B\Gamma]^{n-1}A \subseteq S; S \text{ is semiprime}$

і.е. *ВГВГ…ВГА⊆S*

i.e. $(B\Gamma B\Gamma \dots B)\Gamma A \subseteq S$

From (i) we have $A\Gamma(B\Gamma B\Gamma...B) \subseteq S$

 $\implies A(\Gamma B)^{n-1} \subseteq S$

The proof is completed by induction.

LEMMA 3.2. A Γ -ring M is semiprime if and only if M has no nonzero nilpotent ideals.

PROOF. Let M be semiprime. Suppose $0 \neq I \triangleleft M$ such that $I(\Gamma I)^n = 0$, $n \equiv IN$. Since (0) is a semiprime ideal of M, we have from (ii) of the previous lemma that $I\Gamma I = 0$ and again, since (0) is a semiprime ideal of M, we have I = 0; a contradiction. Therefore M has no nonzero nilpotent ideals.

Conversely, suppose M has no nonzero nilpotent ideals. If $A\Gamma A=0$ for some $A \triangleleft M$, then A=0. This implies that M is semiprime.

Now if $K = \{All \text{ the nilpotent } \Gamma \text{-rings}\}$, we have from lemma 2.5 that $\beta = LK = K_2 = \{M \text{ a } \Gamma \text{-ring} | \text{Every } 0 \neq M/I \text{ has a nonzero nilpotent ideal} \}$.

Let M be any Γ -ring and denote by $\beta(M)$ the sum of all the β -ideals of M.

THEOREM 3.3 If C is the class of all the semiprime Γ -rings, then $S\beta = C$.

PROOF. Let $M \in S\beta$. Then $\beta(M) = 0$. Therefore M has no nonzero β -ideals and hence no nonzero nilpotent ideals. From lemma 3.2 we have that $M \in C$.

Conversely, let $M \Subset C$. Suppose $M \Subset S\beta$, then $\beta(M) \neq 0$ and hence $\beta(M)$ has a nonzero nilpotent ideal N. Let \overline{N} be the ideal of M generated by N. From Andrunakievic's lemma for Γ -rings, we have $\overline{N}\Gamma \overline{N}\Gamma \overline{N} \subseteq N$. If $0 = \overline{N}\Gamma \overline{N}\Gamma \overline{N} =$ $\overline{N}(\Gamma \overline{N})^2$, then \overline{N} is a nonzero nilpotent ideal of M; a contradiction with $M \Subset$ C. If $\overline{N}\Gamma \overline{N}\Gamma \overline{N} \neq 0$ then $\overline{N}\Gamma \overline{N}\Gamma \overline{N}$ is a nonzero nilpotent ideal of M since $\overline{N}\Gamma \overline{N}\Gamma \overline{N} \subseteq N$, and N is nilpotent. Again this is a contradiction since $M \Subset C$. Therefore $M \Subset S\beta$ and the theorem proved.

As in the case of ordinary rings, we also have in the case of Γ -rings that every radical class R is the upper radical class determined by the semisimple class SR, i.e. R=USR.

From theorem 3.3 we now have

THEOREM 3.4. $\beta = UC$, where C is the class of all semiprime Γ -rings.

The following lemma is easy to verify.

LEMMA 3.5. M/I is a prime (semiprime) Γ -ring if and only if I is a prime (semiprime) ideal in the Γ -ring M.

we are now in a position to prove that β is also the upper radical class determined by all the prime Γ -rings M.

THEOREM 3.6. $\beta = UP$, where P is the class of all prime Γ -rings.

PROOF. Since $P \subseteq C$, we have that $UC = \beta \subseteq UP$. Suppose $\beta \neq UP$. Then there exists $0 \neq M \in UP$, $M \in \beta$, i.e. $\beta(M) \neq M$. Therefore there exists $x \in M$, $x \in \beta(M)$. Let X be the ideal of M generated by x. Suppose $X(\Gamma X)^n \oplus \beta(M)$ for every $n \in N$. Let $U = \{J \triangleleft M | X(\Gamma X)^k \oplus J \supseteq \beta(M)$, for all $k = 1, 2, \cdots\}$. There exists, according to Zorn's lemma, an ideal W of M, maximal to the property $X(\Gamma X)^k \oplus W$. We want to show that W is a prime ideal of M. Let L_1 and L_2 be two ideals of M such that $L_1 \Gamma L_2 \subseteq W$. If $W \subset L_1 + W$ and $W \subset L_2 + W$, then there exist $r, t \in N$ such that $X(\Gamma X)^r \subseteq L_1 + W$ and $X(\Gamma X)^t \subseteq L_2 + W$. Hence

 $[X(\Gamma X)^{\intercal}] \Gamma [X(\Gamma X)^{t}] \subseteq (L_{1}+W)\Gamma(L_{2}+W)$ i.e. $X(\Gamma X)^{\intercal} \subseteq L_{1}\Gamma L_{2}+L_{1}\Gamma W+W\Gamma L_{2}$ + $W\Gamma W \subseteq W$; a contradiction. Hence $L_{1}+W=W$ or $L_{2}+W=W$. This implies that $L_{1}\subseteq W$ or $L_{2}\subseteq W$, i.e. W is a prime Γ -ideal of M. From lemma 3.5 we have that $M/W \in P$; a contradiction with $M \in UP$. Hence, there exists $k \in N$ such that $X(\Gamma X)^{k} \subseteq \beta(M)$. Now we have that $0 \neq [\beta(M)+X]/\beta(M) \triangleleft M/\beta(M)$ $\in S\beta$. But $\{[\beta(M)+X]/\beta(M)\}$ $\{\Gamma [\beta(M)+X]/\beta(M)\}^{k}=0$. Therefore $M/\beta(M)$ has a nonzero nilpotent ideal; a contradiction with $M/\beta(M) \in S\beta$. So, $M \in \beta$ and $\beta = UP$.

In [2], theorem 2.2, it was proved that P is a special class and hence that $\beta = UP$ is a special radical. It is easy to check that if K is the class of all nilpotent Γ -rings, then K is hereditary and homomorphically closed. From lemma 2.3 it follows that $LK = \beta$ is also hereditary. Therefore $\beta = UP = UC$ is a supernilpotent radical class.

REFERENCES

- Barnes, W.E., On the Γ-rings of Nobusawa, Pacific J. of Math., 18 (1966), 411-422.
- [2] Groenewald, N. J., Radicals of Γ-rings, Quaestiones Mathematicae, 7 (1984), 337-344.

Vista University Private Bag X380 Bloemfontein 9300 Republic of South Africa