KYUNGPOOK Math. J. 43(2003), 495-497

On the Sum of Two Radical Classes

Dedicated to the memory of Prof. A. M. Zaidi.

M. ZULFIQAR AND M. ASLAM Department of Mathematics, Government College, Lahore, Pakistan e-mail: aslam298@hotmail.com

ABSTRACT. Let \wp_1 , \wp_2 be the radical classes of rings. Y. Lee and R. E. Propes have defined their sum by $\wp_1 + \wp_2 = \{R \in \omega : \wp_1(R) + \wp_2(R) = R\}$. They have shown that $\wp_1 + \wp_2$ is not a radical class in general. In this paper, a few results of Lee and Propes are generalized and also new conditions are investigated under which this sum becomes a radical class.

1. Introduction

Lee and Propes ([2]) introduced the concept of the sum of two radical classes. They have shown that 'Sum' is not a radical class in general. In the present paper we generalize a few results of [2] and investigate new conditions under which 'Sum' becomes a radical class. In the following we shall be working within the class of all associative rings. Let \wp_1 , \wp_2 be radical classes of rings, then 'Sum' is defined as

$$\wp_1 + \wp_2 = \{ R \in \omega : \wp_1(R) + \wp_2(R) = R \}.$$

The following main results were proved by Lee and Propes ([2]).

Theorem 1 ([2]). If $S(\alpha) \cap \tau = 0$, $S(\tau) \cap \alpha = 0$, and $\alpha \cap \tau = 0$, then $\alpha + \tau$ is a radical class. Recall that $S(\alpha)$ and $S(\tau)$ are the semi-simple classes of the radicals α and τ , respectively.

Theorem 2 ([2]). Assume that $S(\tau) \cap \alpha = 0$ and $S(\alpha) \cap \tau = 0$ and that $(I, \mathcal{M} \leq R, I/\mathcal{M} \in \alpha \cap \tau, \mathcal{M} \supset \alpha(R))$ implies $I \in \alpha \cap \tau$. Then $\alpha + \tau$ is a radical class.

Theorem 3 ([2]). If $S(\tau) \cap \alpha = 0$ and $S(\alpha) \cap \tau = 0$ and $\alpha + \tau = \alpha \cup \tau$, then $\alpha + \tau$ is a radical class.

Key words and phrases: radical class, semisimple class, \wp -ideal, homomorphically closed, lower radical.

Received January 30, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 16N80.

Let ω be the universal class of all associative rings and \mathcal{M} be a sub-class of ω and let \mathcal{M}_0 be the homomorphic closure of \mathcal{M} in ω . For each $R \in \omega$, let $D_1(R)$ be the set of all ideals of R. Inductively we define

 $D_{n+1}(R) = \{I : I \text{ is an ideal of some ring in } D_n(R)\}.$

Let $D(R) = \bigcup D_n(R)$, $n = 1, 2, 3, \dots$. By [1], we have

$$\mathcal{LM} = \{ R \in \omega : D(R/I) \cap \mathcal{M}_0 \neq 0, \text{ for each proper ideal } I \text{ of } R \},\$$

is the construction for lower radical determined by \mathcal{M} , and $\mathcal{M} \subseteq \mathcal{LM}$.

Definition 4. A sub-class \wp of ω is said to be a radical class if

- (1) \wp is homomorphically closed.
- (2) For each $R \in \omega$ has maximum \wp -ideal, $\wp(R)$.
- (3) For each $R \in \omega$, we have $R/\wp(R) \in S\wp$ i.e. $\wp(R/\wp(R)) = 0$.

In [2], it was shown that $\wp_1 + \wp_2$ always satisfied (1), (2). For undefined terms, we may refer [3] and [4].

Theorem 5. If $S\wp_1 \cap \wp_2 = 0$ then $\wp_1 + \wp_2$ is a radical class.

Proof. By [2], $\wp_1 + \wp_2$ is homomorphically closed, therefore $\wp_1 + \wp_2 \subseteq \mathcal{L}(\wp_1 + \wp_2)$ (see [4], theorem 9.3, page 40), for the reverse inclusion let $R \in \omega$ such that $R \notin \wp_1 + \wp_2$, therefore $(\wp_1 + \wp_2)(R) \neq R$, $\wp_1(R) + \wp_2(R) \neq R$ and consequently we have $\wp_1(R) \neq R$, $R/\wp_1(R) \neq 0$. Let $K \in D(R/\wp_1(R)) \cap (\wp_1 + \wp_2)$. Now $K \in D(R/\wp_1(R))$ implies that there is a finite chain of ideals such that

$$K = K_n / \wp_1(R) \le K_{n-1} / \wp_1(R) \le \dots \le K_1 / \wp_1(R) \le R / \wp_1(R).$$

Since $R/\wp_1(R) \in S\wp_1$ and $S\wp_1$ is hereditary (see [4], theorem 8.1, page 29). Hence $K \in S\wp_1$ and consequently $\wp_1(K) = 0$. Since $K \in \wp_1 + \wp_2$, therefore $\wp_1(K) + \wp_2(K) = K$ and hence we have $\wp_2(K) = K$. This implies that $K \in \wp_2$ and hence we have $K \in \wp_2 \cap S\wp_1 = 0$ and hence K = 0.

Thus $D(R/\wp_1(R)) \cap (\wp_1 + \wp_2) = 0$. This mean that $R \notin \mathcal{L}(\wp_1 + \wp_2)$ and consequently we have $\mathcal{L}(\wp_1 + \wp_2) \subseteq \wp_1 + \wp_2$. This implies that $\mathcal{L}(\wp_1 + \wp_2) = \wp_1 + \wp_2$. \Box

Remarks that theorems 1, 2 and 3, of [2] can be obtained as a special case of our theorem 5.

Theorem 6. If \wp_1 and \wp_2 are radical classes such that $S \wp_1$ and $S \wp_2$ are homomotphically closed classes, then $\wp_1 + \wp_2$ is radical class.

Proof. Let $R \in \omega$, then by an isomorphism theorem,

$$R/(\wp_1(R) + \wp_2(R)) \cong R/\wp_1(R)/(\wp_1(R) + \wp_2(R))/(\wp_1(R)).$$

Since $R/\wp_1(R) \in S\wp_1$ and $S\wp_1$ is homomorphically closed, we have $R/(\wp_1(R) + \wp_2(R)) \in S\wp_1$. Similarly we have $R/(\wp_1(R) + \wp_2(R)) \in S\wp_2$. Consequently we have $R/(\wp_1(R) + \wp_2(R)) \in S\wp_1 \cap S\wp_2$. By [2], $S(\wp_1 + \wp_2) = S\wp_1 \cap S\wp_2$. Therefore $R/(\wp_1(R) + \wp_2(R)) \in S(\wp_1 + \wp_2)$.

Now $\wp_1 + \wp_2$ satisfies (3) of definition 4, and by [2] $\wp_1 + \wp_2$ satisfies (1), (2) of definition 4. Therefore $\wp_1 + \wp_2$ is a radical class.

We provide here an example to show that such a result is quite natural.

Example. It was shown by Szasz ([3]) that the classes

$$\delta_n = \{ A \in \omega : a^n = a, \ \forall a \in A \}$$

are homomorphically closed. Later in [4], R. Wiegandt has shown that these classes are all homomorphically closed, semi-simple classes. Let $\wp_1 = \bigcup \delta_{n1}$ (upper radical generated by δ_{n1}) and $\wp_2 = \bigcup \delta_{n2}$, by theorem 6, $\wp_1 + \wp_2$ is a radical class.

References

- Y. Lee, On the construction of lower radical properties, Pacific J. Math., 28(1969), 393-395.
- [2] Y. Lee and R. E. Propes, The sum of radical classes, Kyungpook Math. J., 13(1)(1973), 81-86.
- [3] F. Szasz, Beitrage Zur Radical Theories der Rings, Pub 1, Math. Debreen, 17(1970), 267-271.
- R. Wiegandt, Homomorphically closed semi-simple classes, Studia Univ., Babe-Bolyai Cluj, Ser, Math-Mech, 12(1972), 17-20.