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SYMMETRIC PROPERTY OF RINGS WITH RESPECT TO

THE JACOBSON RADICAL

Tugce Pekacar Calci, Sait Halicioglu, and Abdullah Harmanci

Abstract. Let R be a ring with identity and J(R) denote the Jacobson
radical of R, i.e., the intersection of all maximal left ideals of R. A ring

R is called J-symmetric if for any a, b, c ∈ R, abc = 0 implies bac ∈ J(R).

We prove that some results of symmetric rings can be extended to the J-
symmetric rings for this general setting. We give many characterizations

of such rings. We show that the class of J-symmetric rings lies strictly

between the class of symmetric rings and the class of directly finite rings.

1. Introduction

Throughout this paper all rings are associative with identity unless otherwise
stated. A ring is reduced if it has no nonzero nilpotent elements. A weaker
condition than “reduced” is defined by Lambek in [6]. A ring R is symmetric
if for any a, b, c ∈ R, abc = 0 implies acb = 0 if and only if abc = 0 implies
bac = 0. An equivalent condition on a ring is that whenever a product of any
number of elements is zero, any permutation of the factors still yields product
zero. Clearly, symmetric rings are J-symmetric, but the converse is not true in
general. We investigate characterizations of J-symmetric rings, and that many
families of J-symmetric rings are presented.

In what follows, Z denotes the ring of integers and for a positive integer n,
Zn is the ring of integers modulo n. We write Mn(R) for the ring of all n× n
matrices and Tn(R) for the ring of all n × n upper triangular matrices over
R. Also we write R[x], R[[x]], U(R), I(R) for the polynomial ring, the power
series ring over a ring R, the set of all invertible elements and the set of all
idempotent elements of R, respectively.

2. J-symmetric rings

In this section we introduce a class of rings, so-called J-symmetric rings,
which is a generalization of symmetric rings. We investigate which properties
of symmetric rings hold for the J-symmetric case. It is clear that symmetric
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rings are J-symmetric. We supply an example (see Example 2.4) to show that
all J-symmetric rings need not be symmetric. Then, we prove that every J-
symmetric ring is directly finite and we give an example to illustrate there
are directly finite rings which are not J-symmetric. Therefore, the class of
J-symmetric rings lies strictly between classes of symmetric rings and directly
finite rings. It is shown that the class of J-symmetric rings is closed under
finite direct sums. We have an example which shows that the homomorphic
image of a J-symmetric ring is not J-symmetric. Then, we determine under
what conditions a homomorphic image of a ring is J-symmetric.

We now give our main definition.

Definition 2.1. A ring R is called J-symmetric if for any a, b, c ∈ R, abc = 0
implies bac ∈ J(R).

Note that R/J(R) is J-symmetric if and only if R/J(R) is symmetric, since
J(R/J(R)) = 0. Then, we have the following result.

Lemma 2.2. If R/J(R) is a symmetric ring, then R is J-symmetric.

Proof. Assume that abc = 0 for any a,b, c ∈ R. Then, abc = 0 ∈ R/J(R).
Since R/J(R) is symmetric, bac = 0 and so bac ∈ J(R), as asserted. �

All commutative rings, reduced rings, symmetric rings are J-symmetric.
Recall that a ring R is called local if it has only one maximal left ideal (equiv-
alently, maximal right ideal). It is well known that a ring R is local if and only
if a + b = 1 in R implies that either a or b is invertible if and only if R/J(R)
is a division ring. In this direction, we prove that local rings are J-symmetric.

Lemma 2.3. Every local ring is J-symmetric.

Proof. Let R be a local ring, a, b, c ∈ R with abc = 0. If a ∈ J(R) or b ∈ J(R)
or c ∈ J(R), then clearly bac ∈ J(R). Let a, b, c ∈ U(R). This contradicts with
abc = 0. This completes the proof. �

One may suspect that J-symmetric rings are symmetric. But the following
example erases the possibility.

Example 2.4. (1) Consider the ring S =
{(

a b c
0 a d
0 0 a

)
: a, b, c, d ∈ R

}
where R

is a J-symmetric ring. It is easy to show that S is J-symmetric. But it is not

symmetric as for A =
(

0 0 0
0 0 1
0 0 0

)
and B =

(
0 1 0
0 0 0
0 0 0

)
, ABI3 = 0 and BAI3 6= 0,

where I3 is the 3× 3 identity matrix.
(2) Let K be field and F = K〈x, y, z〉 a free algebra and let

I = (FxF )2 + (FyF )2 + (FzF )2 + (FxyzF )2 + (FyzxF )2 + (FzxyF )2 ⊆ F

be an ideal of F , and consider the ring R = F/I. In [7, Example 5], it is proved
that R is not symmetric. It is easy to show that R is local and by Lemma 2.3,
R is J-symmetric.
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The following theorem is very useful to determine whether a ring is J-
symmetric.

Theorem 2.5. For a ring R, the following are equivalent.

(1) R is a J-symmetric ring.
(2) abc ∈ I(R) implies b(1− cab)ac ∈ J(R).
(3) abc ∈ I(R) implies ba(1− cab)c ∈ J(R).
(4) abc ∈ I(R) implies ba(1− bca)c ∈ J(R).

Proof. (1) ⇒ (2) Let abc ∈ I(R). Then, ab(1 − cab)c = 0. Since R is J-
symmetric, b(1− cab)ac ∈ J(R).

(2)⇒ (1) Firstly, we show that ab = 0 implies baR ⊆ J(R). Let ab = 0, then
abr ∈ I(R) for all r ∈ R. By hypothesis, b(1− rab)ar = bar − brabar = bar ∈
J(R), as asserted. To see R is J-symmetric, let abc = 0. Then, bac− bcabac ∈
J(R). Hence, bac ∈ J(R), since bcabac ∈ J(R). Thus, R is J-symmetric.

(1)⇔ (3)⇔ (4) It can be proved similar to the proof of (1)⇔ (2). �

Note that the direct product of J-symmetric rings is again J-symmetric by
Proposition 2.13 to follow. But the homomorphic image of a J-symmetric ring
need not be J-symmetric. Consider the following example.

Example 2.6. Let D be a division ring. R = D[x, y] and I = 〈xy〉 where
xy 6= yx. R is J-symmetric since R is a domain. On the other hand, (x +
I)(y + I)(1 + I) = 0, but (y + I)(x + I)(1 + I) /∈ J(R/I). Hence, R/I is not
J-symmetric.

Lemma 2.7. Let R be a ring and I a nil ideal of R. If R/I is a J-symmetric
ring, then so is R.

Proof. Let a, b, c ∈ R and abc = 0. Then, abc + I = 0 + I. Hence, bac + I ∈
J(R/I). Thus, for any x ∈ R, 1−bacx+I ∈ U(R/I). So there exists y+I ∈ R/I
such that (1 − bacx)y + I = 1 + I. Then, 1 − (1 − bacx)y ∈ I. Since I is nil,
(1 − bacx)y ∈ U(R). Therefore, 1 − bacx is right invertible. Similarly, it can
be shown that 1 − bacx is left invertible. So we have 1 − bacx ∈ U(R) which
completes the proof. �

Theorem 2.8. Let I be an ideal of R where R is a J-symmetric ring and S a
subring of R with I ⊆ S. If S/I is J-symmetric, then S is J-symmetric.

Proof. Let abc = 0 for a, b, c ∈ S. This implies that bac ∈ J(R). Then,
for every x ∈ R, 1 − bacx ∈ U(R). Hence, there exists y ∈ R such that
y(1 − bacx) = 1. By hypothesis bac ∈ J(S/I). So 1 − bacx ∈ U(S/I). Thus,
there exists s ∈ S/I such that (1− bacx)s = 1. Therefore, 1− (1− bacx)s ∈ I.
So y(1 − (1 − bacx)s) = y − s ∈ I. It is clear that y ∈ S. Hence, 1 − bacx is
left invertible in S. Similarly, it can be shown that 1− bacx is right invertible
in S. Hence, we have 1− bacx ∈ U(S) and so bac ∈ J(S), as asserted. �

Corollary 2.9. Let R be a J-symmetric ring and I an ideal of R. If S is a
J-symmetric subring of R, then I + S is J-symmetric.
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Proof. We have I ⊆ I + S ⊆ R. Also, it is clear that I + S/I is J-symmetric.
Hence, I + S is J-symmetric by Theorem 2.8. �

Proposition 2.10. Every subdirect product of J-symmetric rings is J-sym-
metric.

Proof. Let R be a ring with R/I and R/J are J-symmetric where I, J are
ideals of R and I ∩ J = 0. To show that R is J-symmetric consider the map
f : R→ R/I⊕R/J which is defined by f(r) = (r+I, r+J). Then, R ∼= Im(f)
since I ∩J = 0. Hence, R/I⊕R/J and Im(f)/f(I) ∼= R/I are J-symmetric by
hypothesis. Since f(I) ⊆ Im(f) ⊆ R/I ⊕ R/J , R is J-symmetric by Theorem
2.8. �

Lemma 2.11. Let I and J be an ideals of a ring R. For J-symmetric rings
R/I and R/J , R/(IJ) is J-symmetric.

Proof. Let f : R/(I ∩ J) → R/I and g : R/(I ∩ J) → R/J which are defined
by f(r+ (I ∩ J)) = r+ I and g(r+ (I ∩ J)) = r+ J . Then, Kerf ∩ Kerg = 0,
f and g are epimorphisms. Hence, R/(I ∩ J) is the subdirect product of R/I
and R/J . Thus, R/(I ∩ J) is J-symmetric by Proposition 2.10. It is easy to
check that IJ ⊆ I ∩J . Also, we have R/(I ∩J) ∼= (R/(IJ))/((I ∩J)/(IJ)) and
((I ∩ J)/(IJ))2 = 0. Consequently, R/(IJ) is J-symmetric by Lemma 2.7. �

Theorem 2.12. The following are equivalent for a ring R.

(1) R is J-symmetric.
(2) S = {(x, y) ∈ R×R : x− y ∈ J(R)} is J-symmetric.

Proof. (1) ⇒ (2) It is clear that S is a subring of R. Consider the ideals I =
0×J(R) and J = J(R)× 0 of S. Then, I ∩J = 0 and S/I ∼= R ∼= S/J . Hence,
S is a subdirect product of R and so the proof is completed by Proposition
2.10.

(2) ⇒ (1) Let a, b, c ∈ R with abc = 0. Then, (a, a)(b, b)(c, c) = (0, 0).
Hence, (b, b)(a, a)(c, c) = (bac, bac) ∈ J(S), by hypothesis. Thus, for any
x ∈ R, (1, 1)− (bac, bac)(x, x) ∈ U(S). Therefore, (1− bacx, 1− bacx) ∈ U(S).
Consequently, 1− bacx ∈ U(R). This implies that bac ∈ J(R), as asserted. �

Proposition 2.13. Let {Ri}i∈I be a class of rings for an index set I. Then,∏
i∈I Ri is J-symmetric if and only if for each i ∈ I, Ri is J-symmetric.

Proof. LetRi be J-symmetric for all i ∈ I and (ai)i∈I , (bi)i∈I , (ci)i∈I ∈
∏

i∈I Ri

with (ai)(bi)(ci) = 0. Then, aibici = 0 and by hypothesis biaici ∈ J(Ri) for all
i ∈ I. Hence, (bi)(ai)(ci) ∈

∏
i∈I J(Ri) = J(

∏
i∈I Ri). Therefore,

∏
i∈I Ri is

J-symmetric. The sufficiency is clear. �

The following result is a direct consequence of Proposition 2.13.

Corollary 2.14. Let R be a ring. Then, eR and (1−e)R are J-symmetric for
some central idempotent element e of R if and only if R is J-symmetric.
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Lemma 2.15. A ring R is J-symmetric if and only if so is eRe for all idem-
potent e ∈ R.

Proof. Let (eae)(ebe)(ece) = 0 for a, b, c ∈ R and e2 = e ∈ R. Since R is J-
symmetric, (ebe)(eae)(ece) ∈ J(R) and so (ebe)(eae)(ece) ∈ eJ(R)e = J(eRe).
Therefore, eRe is J-symmetric. The converse is trivial. �

We will see in Example 3.7 that J-symmetric rings need not be abelian. The
following example shows that the ring R being J-symmetric does not imply
R/J(R) is abelian.

Example 2.16. Let R = {a + bi + cj + dk | a, b, c, d ∈ Z(3)} be the ring of
quaternions over Z(3) the localization of Z at 3Z. Then, R is J-symmetric.
Consider the ring R/J(R) = R/3R. Then, 2 + 2i+ j + J(R) is an idempotent
in R/J(R). But 2 + 2i+ j+ J(R) is not central in R/J(R). So, R/J(R) is not
abelian.

In Proposition 2.17, we show that if R is J-symmetric and idempotents lift
modulo J(R), then R/J(R) is abelian.

Proposition 2.17. Let R be a ring whose idempotents lift modulo J(R). If R
is J-symmetric, then R/J(R) is abelian.

Proof. Let e = e2 ∈ R/J(R). Then, e2 = e ∈ R by hypothesis. Then, for every
x ∈ R, xe(1 − e) = 0 = x(1 − e)e. Since R is J-symmetric, for every x ∈ R,
ex(1 − e), (1 − e)xe ∈ J(R). Hence, for every x ∈ R, ex − xe ∈ J(R), and so
R/J(R) is abelian. �

In [8], a ring R is called clean if every element of R is the sum of a unit
and an idempotent. Clean rings are exchange, but the converse is not true in
general. It is well known that abelian exchange rings are clean. Hence, we have
the following theorem.

Theorem 2.18. Let R be a J-symmetric ring. Then, R is clean if and only if
R is exchange.

Proof. Clean rings are always exchange. For the converse let R be an exchange
ring. Then, idempotents lift modulo J(R). By Proposition 2.17, R/J(R)
is abelian. Then, R/J(R) is a clean ring by [8]. Hence, R is clean by [1,
Proposition 7]. �

In [10] a ring R is said to has stable range 1 if for any a, b ∈ R satisfying
aR+ bR = R, there exists y ∈ R such that a+ by is right invertible. It is clear
that R has stable range 1 if and only if R/J(R) has stable range 1. It is known
from [13] that exchange rings in which every idempotent is central have stable
range 1. So, we have the following.

Theorem 2.19. J-symmetric exchange rings have stable range 1.
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Proof. Let R be a J-symmetric exchange ring. Then, R/J(R) is exchange and
idempotents lift modulo J(R), since R is exchange. Hence, R/J(R) is abelian
by Proposition 2.17. Thus, R/J(R) has the stable range 1 by [13, Theorem 6].
Therefore, R has the stable range 1. �

Similar to the definition of strongly J-clean rings [2], one can define J-clean
rings. A ring R is called J-clean, for every x ∈ R, there exist an idempotent
e ∈ R and j ∈ J(R) such that x = e+j. In this direction we have the following.

Proposition 2.20. Let R be an abelian ring. Then, we have the following.

(1) If R is J-clean, then it is J-symmetric.
(2) If R is J-quasipolar, then it is J-symmetric.

Proof. (1) Let a, b, c ∈ R with abc = 0. By J-cleanness, there are e2 = e
f2 = f , g2 = g and r, s, t ∈ J(R) such that a = e+ r, b = f + s and c = g+ t.
Then, abc = 0 implies efg + x = 0 where x ∈ J(R). Since R is abelian, efg
is an idempotent. Hence, efg = 0. So bac = feg + y where y ∈ J(R). Since
feg = 0, bac ∈ J(R).

(2) It is similar to the proof of (1). �

Recall that an element r of a ring R is called left minimal if Rr is minimal
left ideal of R, an idempotent e ∈ R is called left minimal idempotent if e
is a left minimal element. Also, MEl(R) denotes the set of all left minimal
idempotents of R. A ring R is left minimal abelian if every element of MEl(R)
is left semicentral in R (see [11]).

Theorem 2.21. Every J-symmetric ring is left minimal abelian ring.

Proof. Let e ∈ MEl(R), a ∈ R and h = ae − eae. If h 6= 0, then eh1R = 0,
he = h and Rh = Re. Thus, he = h ∈ J(R) since R is J-symmetric. There
exists r ∈ R such that e = rh since Rh = Re. Hence, e ∈ J(R) and so
e = 0 which is a contradiction. So we have h = 0. Therefore, ae = eae as
asserted. �

In [12], a ring R is defined to be quasi-normal if ae = 0 implies eaRe = 0
for nilpotent a and idempotent e in R. It is proved that R is quasi-normal if
and only if eR(1− e)Re = 0 for each idempotent e and R is said to be weakly
quasi-normal if eR(1− e)Re ⊆ J(R) for each e2 = e ∈ R.

Proposition 2.22. Every J-symmetric ring is weakly quasi-normal.

Proof. Let e2 = e ∈ R. Then, r(1− e)e = 0 and hypothesis imply (1− e)re ∈
J(R) for every r ∈ R. Hence, (1 − e)Re ⊆ J(R). Since J(R) is an ideal,
eR(1− e)Re ⊆ J(R). �

Recall that a ring R is called directly finite whenever a, b ∈ R, ab = 1 implies
ba = 1. Then, we have the following.

Proposition 2.23. Every J-symmetric ring is directly finite.
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Proof. Let R be a J-symmetric ring and assume that ab = 1 for a, b ∈ R. Then,
a(1 − ba) = 0. Hence, ba(1 − ba) = 0. Since R is J-symmetric, ab(1 − ba) =
1− ba ∈ J(R). Therefore, 1− ba = 0 and so ba = 1. �

It is well known that for any positive integer n, the n× n full matrix rings
Mn(R) over a real number field R are directly finite. But, by Remark 3.11,
we know that Mn(R) are not J-symmetric for n ≥ 2. Hence, the converse of
Proposition 2.23 is not true in general.

3. Extensions of J-symmetric rings

In [9], Rege and Chhawchharia introduced the notion of an Armendariz ring.
A ring R is called Armendariz if for any f(x) =

∑n
i=0 aix

i, g(x) =
∑s

j=0 bjx
j ∈

R[x], f(x)g(x) = 0 implies that aibj = 0 for all i and j. The name of the
ring was given due to Armendariz who proved that reduced rings (i.e., rings
without nonzero nilpotent elements) satisfied this condition. The symmetric
ring property does not go up to polynomial rings by [4, Example 3.1]. We have
a similar situation for J-symmetric rings.

Proposition 3.1. Let R be a ring. If R[x] is J-symmetric, then R is J-
symmetric. The converse holds if R is Armendariz.

Proof. Assume that R[x] is J-symmetric. Let a, b, c ∈ R with abc = 0. Since
R[x] is J-symmetric, bac ∈ J(R[x]). Then, 1 − (bac)r is invertible in R[x] for
all r ∈ R and so bac ∈ J(R). Therefore, R is J-symmetric. Conversely, sup-
pose that R is Armendariz. Let f(x) =

∑n
i=0 aix

i, g(x) =
∑m

j=0 bjx
j , h(x) =∑t

k=0 ckx
k ∈ R[x] with f(x)g(x)h(x) = 0. By hypothesis, we have aibjck = 0

for all i, j and k. Since R is J-symmetric, bjaick ∈ J(R) for all i, j and k. By
Amitsur Theorem, J(R[x]) = (J(R[x]) ∩ R)[x] implies J(R)[x] ⊆ J(R[x]) and
so g(x)f(x)h(x) ∈ J(R[x]). This completes the proof. �

Proposition 3.2. Let R be a ring. Then, the ring of formal power series R[[x]]
is J-symmetric if and only if R is J-symmetric.

Proof. It can be easily seen by the fact that J(R[[x]]) = J(R) + 〈x〉. �

Let S and T be any rings, M an S-T -bimodule and R the formal triangular

matrix ring [ S M
0 T ]. It is well known that J(R) =

[
J(S) M
0 J(T )

]
.

Proposition 3.3. Let R = [ S M
0 T ]. Then, R is J-symmetric if and only if S

and T are J-symmetric.

Proof. The necessity is obvious by Lemma 2.15. For the other inclusion, assume
that S and T are J-symmetric and[

s1 m1

0 t1

] [
s2 m2

0 t2

] [
s3 m3

0 t3

]
= 0.
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Then,
[ s1s2s3 ∗

0 t1t2t3

]
= [ 0 0

0 0 ]. Since S and T are J-symmetric, s2s1s3 ∈ J(S)
and t2t1t3 ∈ J(T ). Therefore,[

s2 m2

0 t2

] [
s1 m1

0 t1

] [
s3 m3

0 t3

]
∈ J(R)

and so R is J-symmetric. �

The following result directly follows from Theorem 3.3.

Corollary 3.4. Let R be a ring. Then, R is J-symmetric if and only if Tn(R)
is J-symmetric for every positive integer n.

Proposition 3.5. The following are equivalent for a ring R.

(1) R is J-symmetric.

(2) S =


 r r12 ··· r1n

0 r ··· r2n
...

...
...

...
0 0 ··· r

 : r, rij ∈ R(i < j)

 is J-symmetric.

Proof. (1)⇒ (2) Consider the ideal I =

 0 w12 ··· w1n
0 0 ··· w2n

...
...

...
...

0 0 ··· 0

 of S. Hence, R ∼= S/I

is J-symmetric. Thus, S is J-symmetric, as In = 0 and by Lemma 2.7.
(2) ⇒ (1) If S is J-symmetric, then obviously R is J-symmetric by Lemma

2.15. �

Corollary 3.6. Let R be a ring. Then, the following are equivalent.

(1) R is J-symmetric.
(2) R[x]/(xn) is J-symmetric for all n ≥ 2.

Proof. Since

R[x]/(xn) =





a1 a2 a3 · · · an−1 an
0 a1 a2 · · · an−2 an−1

0 0 a1
. . . an−3 an−2

...
...

...
. . .

...
...

0 0 0 · · · a1 a2
0 0 0 · · · 0 a1


| ai ∈ R


,

it is clear by Proposition 3.5. �

Example 3.7. Let R = Z2. Then, for every positive integer n, Tn(R) is
J-symmetric by Corollary 3.4. But Tn(R) is not abelian.

Let A be an algebra over a commutative ring R. In [3], the Dorroh ex-
tension of R by A is the abelian group R ⊕ A with multiplication given by
(r1, a1)(r2, a2) = (r1r2, r1a2 + a1r2 + a1a2) for ri ∈ R and ai ∈ A. We use
I(R;A) = R⊕A to denote the Dorroh extension of R by A.
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Proposition 3.8. Suppose that for any a ∈ A there exists b ∈ A such that
a+ b+ ab = 0. Then, the following are equivalent for a ring R.

(1) R is J-symmetric.
(2) S = I(R;A) is J-symmetric.

Proof. (1) ⇒ (2) Let (r, a), (s, b), (t, c) ∈ S with (r, a)(s, b)(t, c) = (0, 0).
Then, (rst, d) = (0, 0) where d ∈ A. Since R is J-symmetric, srt ∈ J(R). For
any x ∈ A, (srt, x) = (srt, 0) + (0, x). Since (0, A) ⊆ J(S), it is enough to
see (srt, 0) ∈ J(S) to complete the proof. To see that let (m, y) ∈ S. Then,
(1, 0)− (srt, 0)(m, y) = (1, 0)− (srtm, srty) = (1− srtm,−srty) ∈ U(S), since
(1 − srtm,−srty) = (1 − srtm, 0)(1, (1 − srtm)−1(−srty)) and 1 − srtm ∈
U(R), (1, (1− srtm)−1(−srty)) = (1, 0) + (0, (1− srtm)−1(−srty) ∈ U(S) by
(0, A) ⊆ J(S). Hence, (srt, 0) ∈ J(S).

(2) ⇒ (1) Assume that S is J-symmetric and a, b, c ∈ R with abc = 0.
Then, (a, 0)(b, 0)(c, 0) = (0, 0) and so (b, 0)(a, 0)(c, 0) ∈ J(S) by hypothesis.
Hence, for any x ∈ R, (1, 0) − (bac, 0)(x, 0) = (1 − bacx, 0) ∈ U(S). Thus,
1− bacx ∈ U(R) as asserted. �

Recall that R[[x, σ]] denotes the ring of skew formal power series over a ring
R where σ : R→ R is a ring homomorphism. That is, R[[x, σ]] is the set of all
formal power series in x with coefficients from R with multiplication defined
by xr = σ(r)x for every r ∈ R. It is clear that R[[x, 1R]] = R[[x]] is the formal
power series ring over R. Also it is well-known that J(R[[x, σ]]) = J(R) + 〈x〉.
The following is the direct consequence of Proposition 3.8 by the fact that
R[[x, σ]] ∼= I(R; 〈x〉) where 〈x〉 is the ideal generated by x.

Corollary 3.9. Let R be a ring and σ : R→ R a ring homomorphism. Then,
the following are equivalent.

(1) R is J-symmetric.
(2) R[[x, σ]] is J-symmetric.

Let A be a ring and B a subring of A and consider the set

R[A,B] = {a1, a2, . . . , an, b, b, . . . : ai ∈ A, b ∈ B, 1 6 i 6 n}.
Hence, R[A,B] is a ring with componentwise addition and multiplication. Note
that J(R[A,B]) = R[J(A), J(A) ∩ J(B)].

Proposition 3.10. Let A be a ring and with a subring B. Then, the following
are equivalent.

(1) A and B are J-symmetric.
(2) R[A,B] is J-symmetric.

Proof. (1)⇒ (2) Let (ai1, . . . , ain, bi, bi, . . .) ∈ R[A,B] for every 1 ≤ i ≤ 3,

(a11, . . . , a1n, b1, b1, . . .)(a21, . . . , a2n, b2, b2, . . .)(a31, . . . , a3n, b3, b3, . . .) = 0.

Then, a1ia2ia3i = 0 = b1b2b3 for every 1 ≤ i ≤ 3. Since A and B are J-
symmetric, for every 1 ≤ i ≤ 3, a2ia1ia3i, b2b1b3 ∈ J(A) and b2b1b3 ∈ J(B).
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So,

(a21, . . . , a2n, b2, b2, . . .)(a11, . . . , a1n, b1, b1, . . .)(a31, . . . , a3n, b3, b3, . . .)

∈ R[J(A), J(A) ∩ J(B)] = J(R[A,B]),

as desired.
(2)⇒ (1) Let a1, a2, a3 ∈ A and a1a2a3 = 0. Then,

(a1, . . . , 0, 0, 0, . . .)(a2, . . . , 0, 0, 0, . . .)(a3, . . . , 0, 0, 0, . . .) = 0.

Since R[A,B] is J-symmetric, a2a1a3 ∈ J(A) and so A is J-symmetric. Simi-
larly, it can be shown that B is a J-symmetric ring. �

Remark 3.11. Let R be a ring with identity and A = [ 0 1
0 0 ], B = [ 0 0

1 0 ], C =
[ 0 0
0 1 ] ∈ M2(R). Then, ABC = 0 but BAC /∈ J(M2(R)) since J(M2(R)) =
M2(J(R)). Therefore, Mn(R) is not J-symmetric.

Let R be a ring and s ∈ R a central element. In the ring Ks(R), matrices are
multiplied according to the following relation:(

a b
c d

)(
e f
g h

)
=

(
ae+ sbg af + bh
ce+ dg scf + dh

)
.

Note that J(Ks(R)) =
(

J(R) (s:J(R))
(s:J(R)) J(R)

)
where (s : J(R)) = {r ∈ R : rs ∈

J(R)} (see [5]). By Lemma 2.15, if Ks(R) is J-symmetric, then the ring R
is J-symmetric. But as the following shows that the converse is not true, in
general.

Example 3.12. Let R = Z4 and s = 3. Then, R is J-symmetric. For A =(
1 1
3 1

)
, B =

(
1 0
1 0

)
and C =

(
1 0
0 1

)
, ABC =

(
0 0
0 0

)
but BAC =

(
1 1
1 3

)
/∈

J(Ks(R)). Hence, Ks(R) is not J-symmetric.

Proposition 3.13. For a ring R, the following are equivalent:

(1) R is J-symmetric.
(2) K0(R) is J-symmetric.

Proof. (1)⇒ (2) Let R be a J-symmetric ring. Assume that(
a1 a2
a3 a4

)(
b1 b2
b3 b4

)(
c1 c2
c3 c4

)
=

(
0 0
0 0

)
.

Then (
a1b1c1 ∗
∗ a4b4c4

)
=

(
0 0
0 0

)
.

Hence, a1b1c1 = 0 and a4b4c4 = 0. Since R is J-symmetric, b1a1c1 ∈ J(R) and
b4a4c4 ∈ J(R). Therefore,(

b1 b2
b3 b4

)(
a1 a2
a3 a4

)(
c1 c2
c3 c4

)
=

(
b1a1c1 ∗
∗ b4a4c4

)
∈ J(K0(R))

as asserted.
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(2)⇒ (1) Assume that K0(R) is J-symmetric and abc = 0. Then(
a 0
0 0

)(
b 0
0 0

)(
c 0
0 0

)
=

(
0 0
0 0

)
and so (

b 0
0 0

)(
a 0
0 0

)(
c 0
0 0

)
∈ J(K0(R))

which implies that bac ∈ J(R). Hence, R is J-symmetric. �
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