• Title/Summary/Keyword: r-Noetherian module

Search Result 77, Processing Time 0.019 seconds

COMMUTATIVE RINGS AND MODULES THAT ARE r-NOETHERIAN

  • Anebri, Adam;Mahdou, Najib;Tekir, Unsal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1221-1233
    • /
    • 2021
  • In this paper, we introduce and investigate a new class of modules that is closely related to the class of Noetherian modules. Let R be a commutative ring and M be an R-module. We say that M is an r-Noetherian module if every r-submodule of M is finitely generated. Also, we call the ring R to be an r-Noetherian ring if R is an r-Noetherian R-module, or equivalently, every r-ideal of R is finitely generated. We show that many properties of Noetherian modules are also true for r-Noetherian modules. Moreover, we extend the concept of weakly Noetherian rings to the category of modules and we characterize Noetherian modules in terms of r-Noetherian and weakly Noetherian modules. Finally, we use the idealization construction to give non-trivial examples of r-Noetherian rings that are not Noetherian.

A Note on Noetherian Polynomial Modules

  • Jung Wook Lim
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.3
    • /
    • pp.417-421
    • /
    • 2024
  • Let R be a commutative ring and let M be an R-module. In this note, we give a brief proof of the Hilbert basis theorem for Noetherian modules. This states that if R contains the identity and M is a Noetherian unitary R-module, then M[X] is a Noetherian R[X]-module. We also show that if M[X] is a Noetherian R[X]-module, then M is a Noetherian R-module and there exists an element e ∈ R such that em = m for all m ∈ M. Finally, we prove that if M[X] is a Noetherian R[X]-module and annR(M) = (0), then R has the identity and M is a unitary R-module.

A NOTE ON w-NOETHERIAN RINGS

  • Xing, Shiqi;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.541-548
    • /
    • 2015
  • Let R be a commutative ring. An R-module M is called a w-Noetherian module if every submodule of M is of w-finite type. R is called a w-Noetherian ring if R as an R-module is a w-Noetherian module. In this paper, we present an exact version of the Eakin-Nagata Theorem on w-Noetherian rings. To do this, we prove the Formanek Theorem for w-Noetherian rings. Further, we point out by an example that the condition (${\dag}$) in the Chung-Ha-Kim version of the Eakin-Nagata Theorem on SM domains is essential.

ON NOETHERIAN PSEUDO-PRIME SPECTRUM OF A TOPOLOGICAL LE-MODULE

  • Anjan Kumar Bhuniya;Manas Kumbhakar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • An le-module M over a commutative ring R is a complete lattice ordered additive monoid (M, ⩽, +) having the greatest element e together with a module like action of R. This article characterizes the le-modules RM such that the pseudo-prime spectrum XM endowed with the Zariski topology is a Noetherian topological space. If the ring R is Noetherian and the pseudo-prime radical of every submodule elements of RM coincides with its Zariski radical, then XM is a Noetherian topological space. Also we prove that if R is Noetherian and for every submodule element n of M there is an ideal I of R such that V (n) = V (Ie), then the topological space XM is spectral.

GRADED w-NOETHERIAN MODULES OVER GRADED RINGS

  • Wu, Xiaoying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1319-1334
    • /
    • 2020
  • In this paper, we study the basic theory of the category of graded w-Noetherian modules over a graded ring R. Some elementary concepts, such as w-envelope of graded modules, graded w-Noetherian rings and so on, are introduced. It is shown that: (1) A graded domain R is graded w-Noetherian if and only if Rg𝔪 is a graded Noetherian ring for any gr-maximal w-ideal m of R, and there are only finite numbers of gr-maximal w-ideals including a for any nonzero homogeneous element a. (2) Let R be a strongly graded ring. Then R is a graded w-Noetherian ring if and only if Re is a w-Noetherian ring. (3) Let R be a graded w-Noetherian domain and let a ∈ R be a homogeneous element. Suppose 𝖕 is a minimal graded prime ideal of (a). Then the graded height of the graded prime ideal 𝖕 is at most 1.

INJECTIVE MODULES OVER ω-NOETHERIAN RINGS, II

  • Zhang, Jun;Wang, Fanggui;Kim, Hwankoo
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1051-1066
    • /
    • 2013
  • By utilizing known characterizations of ${\omega}$-Noetherian rings in terms of injective modules, we give more characterizations of ${\omega}$-Noetherian rings. More precisely, we show that a commutative ring R is ${\omega}$-Noetherian if and only if the direct limit of GV -torsion-free injective R-modules is injective; if and only if every R-module has a GV -torsion-free injective (pre)cover; if and only if the direct sum of injective envelopes of ${\omega}$-simple R-modules is injective; if and only if the essential extension of the direct sum of GV -torsion-free injective R-modules is the direct sum of GV -torsion-free injective R-modules; if and only if every $\mathfrak{F}_{w,f}(R)$-injective ${\omega}$-module is injective; if and only if every GV-torsion-free R-module admits an $i$-decomposition.

MINIMAL PROJECTIVE RESOLUTIONS OF A FINITELY GENERATED MODULE M OVER A NOETHERIAN LOCAL RING (R, 𝔪) AND THE COHOMOLOGIES OF (M, R/𝔪)

  • Lee, Sang Cheol;Song, Yeong Moo
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.355-366
    • /
    • 2018
  • Let R be a commutative ring with identity and let M be a finitely generated module over a Noetherian local ring R. Then it is well-known that M has a minimal projective resolution, which is unique up to isomorphisms of exact sequences. We provide a new proof of its uniqueness. Moreover, we deal with the cohomologies of (M, R/m).

SOME ONE-DIMENSIONAL NOETHERIAN DOMAINS AND G-PROJECTIVE MODULES

  • Kui Hu;Hwankoo Kim;Dechuan Zhou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1453-1461
    • /
    • 2023
  • Let R be a one-dimensional Noetherian domain with quotient field K and T be the integral closure of R in K. In this note we prove that if the conductor ideal (R :K T) is a nonzero prime ideal, then every finitely generated reflexive (and hence finitely generated G-projective) R-module is isomorphic to a direct sum of some ideals.

EAKIN-NAGATA THEOREM FOR COMMUTATIVE RINGS WHOSE REGULAR IDEALS ARE FINITELY GENERATED

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.271-275
    • /
    • 2010
  • Let R be a commutative ring with identity, T(R) be the total quotient ring of R, and D be a ring such that $R{\subseteq}D{\subseteq}T(R)$ and D is a finite R-module. In this paper, we show that each regular ideal of R is finitely generated if and only if each regular ideal of D is finitely generated. This is a generalization of the Eakin-Nagata theorem that R is Noetherian if and only if D is Noetherian.