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ON NOETHERIAN PSEUDO-PRIME SPECTRUM OF

A TOPOLOGICAL LE-MODULE

Anjan Kumar Bhuniya and Manas Kumbhakar

Abstract. An le-module M over a commutative ring R is a complete

lattice ordered additive monoid (M,6,+) having the greatest element e
together with a module like action of R. This article characterizes the

le-modules RM such that the pseudo-prime spectrum XM endowed with
the Zariski topology is a Noetherian topological space. If the ring R is

Noetherian and the pseudo-prime radical of every submodule elements of

RM coincides with its Zariski radical, then XM is a Noetherian topologi-
cal space. Also we prove that if R is Noetherian and for every submodule

element n of M there is an ideal I of R such that V (n) = V (Ie), then

the topological space XM is spectral.

1. Introduction

Inspired by the abstract ideal theory [2–4,11,27,28] and the theory of lattice
modules [17–19,29], we introduced le-modules over a commutative ring [8] with
a desire to develop an alternative abstract submodule theory. An le-module
over a commutative ring has two distinctive features, namely it abstracts the
set P (A) of all subsets of a module A over R and the action considered on M
is of the ring R. Whereas in the existing theory of lattice modules, a lattice
module stands for the set Sub(A) of all submodules of A and action considered
on a lattice module is of a multiplicative lattice which stands for the lattice
of all ideals of R. Thus it becomes possible to characterize submodules of a
module as distinguished elements in an le-module M and to study structure
of rings directly. In the lattice Sub(A), addition of two submodules is their
lattice join, but the situation is not similar in the lattice P (A). So we have to
consider an ‘addition’ on P (A) together with the complete lattice order ‘⊆’ to
catch the additive feature of A. Thus we define [8] an le-module as follows:

An le-semigroup (M,+,6, e) is such that (M,6) is a complete lattice with
the greatest element e, (M,+) is a commutative monoid with the zero element
0M and for all m,mi ∈M, i ∈ I it satisfies
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(S) m+ (∨i∈Imi) = ∨i∈I(m+mi).

Let R be a commutative ring and (M,+,6, e) be an le-semigroup. Then
M is called an le-module over R if there is a mapping R ×M −→ M which
satisfies

(M1) r(m1 +m2) = rm1 + rm2,
(M2) (r1 + r2)m 6 r1m+ r2m,
(M3) (r1r2)m = r1(r2m),
(M4) 1Rm = m; 0Rm = r0M = 0M ,
(M5) r(∨i∈I(mi)) = ∨i∈I(rmi) for all r, r1, r2 ∈ R and m,m1,m2,mi ∈ M ,

and i ∈ I.

We denote an le-module M over R by RM or simply by M . From (M5), we
have,

(M5)′ m1 6 m2 ⇒ rm1 6 rm2 for all r ∈ R and m1,m2 ∈ M .

For basic notions and results on le-modules over commutative rings we refer
to [8], [22]. Here we recap only some of them from [8], [20] and [21], which we
will need in this article.

An element n of an le-module RM is called a submodule element if n+n, rn 6
n for all r ∈ R. If n 6= e, then n is called a proper submodule element. It follows
that 0M = 0Rn 6 n for every submodule element n of M .

Now we fix some notations:

N = set of all natural numbers,

S(M) = set of all submodule elements of M,∑
i∈I

ni = ∨{(ni1 + ni2 + · · ·+ nik) : k ∈ N, and i1, i2, . . . , ik∈I}, ni∈S(M),

Ie = ∨{
k∑
i=1

aie : k ∈ N; a1, a2, . . . , ak ∈ I}, I is an ideal of R,

(n : e) = {r ∈ R : re 6 n}, n ∈ S(M),

XM = {n ∈ S(M) | n 6= e and (n : e) is a prime ideal of R},
V (n) = {l ∈ XM : n 6 l}, n ∈ S(M),

VR(M) = {V (n) : n ∈ S(M)},
Prad(n) = ∧p∈V (n)p.

Then
∑
i∈I ni is a submodule element ofM , which we call the sum of {ni}i∈I .

Also for every ideal I of R and a submodule element n of M , Ie is a submodule
element of M and (n : e) is an ideal of R. Moreover, Ie 6 n if and only if
I ⊆ (n : e). For any two ideals I and J of R, I ⊆ J implies that Ie 6 Je. If
n, l ∈ S(M) are such that n 6 l, then (n : e) ⊆ (l : e). Also if {ni}i∈I is an
arbitrary family of submodule elements in RM , then (∧i∈Ini : e) = ∩i∈I(ni : e).
This results, proved in [8], are useful here.
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Every element of XM is called a pseudo-prime submodule element and XM is
called the pseudo-prime spectrum of RM . A submodule element n of M is said
to be pseudo-semiprime if n is a meet of some pseudo-prime submodule ele-
ments of M . A pseudo-prime submodule element p of M is called extraordinary
if for any two pseudo-semiprime submodule elements n and l of M , n ∧ l 6 p
implies that either n 6 p or l 6 p. If XM = ∅ or every pseudo-prime submodule
element of M is extraordinary, then RM is called a topological le-module.

There are many functorial constructions associating topological spaces with
a ring or a module. It helps to interpret arithmetical properties of a ring
R or a module RM in the geometric language on the associated topological
spaces. Inspired by several enlightening interplay between the Zariski topology
on the pseudo-prime spectrum of a module M and algebraic properties of M
[1, 6, 7, 12–15, 23–26], we introduced the Zariski topology on the pseudo-prime
spectrum XM of an le-module RM over a ring R in [21]. There we studied the
le-modules RM such that XM is an irreducible topological space. In this article,
we characterize the le-modules RM such that XM is a Noetherian topological
space.

The set VR(M) satisfies all axioms of a topological space for the closed
subsets if and only if RM is a topological le-module [21]. If RM is a topological
le-module, then the topology induced by VR(M) is called the Zariski topology
on XM .

Henceforth, in this article, we assume that every le-module RM is a topo-
logical le-module.

For every n ∈ M , Prad(n) is a submodule element of M and is called the
pseudo-prime radical of n. If V (n) = ∅, then we set Prad(n) = e. Note
that n 6 Prad(n) and that Prad(n) = e or Prad(n) is a pseudo-semiprime
submodule element of M . Also V (n) = V (Prad(n)). A submodule element n
of M is said to be a pseudo-prime radical submodule element if n = Prad(n). It
is easy to check that Prad(Prad(n)) = Prad(n), i.e., Prad(n) is a pseudo-prime
radical submodule element of M .

For each subset Y of XM , we denote the closure of Y in XM by Y , and meet
of the elements of Y by =(Y ), i.e., =(Y ) = ∧p∈Y p. If Y = ∅, then we take
=(Y ) = e.

Now we recall the following results from [20] and [21], which have some use
in this article.

Lemma 1.1 ([20,21]). Let RM be an le-module. Then the following statements
hold.

(1) For every family of submodule elements {ni}i∈I of M , ∩i∈IV (ni) =
V (

∑
i∈I ni).

(2) If for every submodule element n of M there exists an ideal I of R such
that V (n) = V (Ie), then M is topological.

A topological space X is irreducible if for every pair of closed subsets Y1, Y2

of X, X = Y1 ∪ Y2 implies X = Y1 or X = Y2. A nonempty subset Y of a
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topological space X is called an irreducible subset if the subspace Y of X is
irreducible. If a subset Y of X is irreducible, so is its closure Y . An element
y ∈ Y is called a generic point of Y if Y = {y}. Now we state another useful
result from [21].

Lemma 1.2 ([21]). Let RM be an le-module. Then the following statements
hold.

(1) XM is T0.
(2) For every Y ⊆ XM , Y = V (=(Y )) and hence Y is closed if and only if

Y = V (=(Y )). In particular, {l} = V (l) for every l ∈ XM .
(3) For Y ⊆ XM , Y is an irreducible closed subset of XM if and only if

Y = V (p) for some p ∈ XM . Thus every irreducible closed subset of
XM has a generic point.

Also we refer to [5], [10] for background on commutative ring theory, [9] for
fundamentals on topology.

2. Noetherian pseudo-prime spectrum of an le-module

A topological space X is called quasi-compact if every open cover of X has a
finite subcover. A subset Y of X is said to be quasi-compact if the subspace Y
is quasi-compact. To avoid ambiguity, we would like to mention that a compact
topological space is a quasi-compact Hausdorff space. To keep uniformity in
terminology used in the commutative ring theory we continue with the term
quasi-compact. A topological space X is said to be Noetherian if the open
subsets of X satisfy the ascending chain condition. Thus X is Noetherian if
and only if the closed subsets of X satisfy the descending chain condition.
This is equivalent to each of the conditions that every open subspace of X is
quasi-compact and every subspace of X is quasi-compact.

In the following result we establish a relationship between the Noetherian-
ness of the pseudo-prime spectrum of an le-module RM with a chain condition
on the le-module M .

Theorem 2.1. An le-module RM has a Noetherian pseudo-prime spectrum if
and only if the ACC holds for pseudo-prime radical submodule elements of M .

Proof. Assume that the ACC holds for pseudo-prime radical submodule ele-
ments of M . Let

V (n1) ⊇ V (n2) ⊇ · · ·

be a descending chain of closed subsets of XM , where each ni is a submodule
element of M . Then

=(V (n1)) 6 =(V (n2)) 6 · · ·

is an ascending chain of pseudo-prime radical submodule elements =(V (ni)) =
Prad(ni) of M . Thus, by assumption there exists k ∈ N such that for all i ∈ N,
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=(V (nk)) = =(V (nk+i)).

Now, by Lemma 1.2(2), we have

V (nk) = V (=(V (nk))) = V (=(V (nk+i))) = V (nk+i).

Hence XM is a Noetherian topological space.
Conversely, let M has a Noetherian pseudo-prime spectrum. Also let

n1 6 n2 6 · · ·

be an ascending chain of pseudo-prime radical submodule elements of M . Then
ni = Prad(ni) = =(V (ni)). Also

V (n1) ⊇ V (n2) ⊇ · · ·

is a descending chain of closed subsets of XM . Since M has a Noetherian
pseudo-prime spectrum there is k ∈ N such that for all i ∈ N, V (nk) = V (nk+i).
Thus

nk = Prad(nk) = =(V (nk)) = =(V (nk+i)) = Prad(nk+i) = nk+i.

Hence ACC holds for pseudo-prime radical submodule elements of M . �

Let R be a ring and Spec(R) be the set of all prime ideals of R. Then there
is a topology on Spec(R), called the Zariski topology on Spec(R), such that the
closed sets are of the form

V R(I) = {P ∈ Spec(R) : I ⊆ P},

where I is an ideal of R.
Recall that if I is an ideal of a ring R, then the radical of I is defined by

Rad(I) = {a ∈ R : an ∈ I for some positive integer n}.
Then Rad(I) is also an ideal of R and I ⊆ Rad(I). An ideal I of R is called a
radical ideal if I = Rad(I).

A topological space X is called spectral if it is homeomorphic to Spec(R)
for some commutative ring R. It is well known that a topological space is
spectral if and only if it is T0, quasi-compact, the quasi-compact open subsets
of X are closed under finite intersection and form an open basis, and each
irreducible closed subset of X has a generic point. A Noetherian topological
space is spectral if and only if it is T0 and every non-empty irreducible closed
subset has a generic point [16]. From Lemma 1.2, it follows that XM is always
T0 and every non-empty irreducible closed subset of XM has a generic point.

Now we present some algebraic conditions under which the pseudo-prime
spectrum XM of an le-module M is spectral. Recall that a ring R is called
Noetherian if ascending chain condition holds for ideals in R. Also for every
family {Iλ}λ∈Λ of ideals in R, we have

∑
λ∈Λ Iλe = (

∑
λ∈Λ Iλ)e.
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Theorem 2.2. Let RM be an le-module. If R is a Noetherian ring and for
every submodule element n of M there exists an ideal I of R such that V (n) =
V (Ie), then XM is a spectral space.

Proof. We will show that every open subset of XM is quasi-compact. Let H be
an open subset of XM and let {Eλ}λ∈Λ be an open cover of H. Then there are
submodule elements n and nλ, where H = XM \ V (n) and Eλ = XM \ V (nλ)
for each λ ∈ Λ, such that

H ⊆ ∪λ∈ΛEλ = XM \ ∩λ∈ΛV (nλ).

By hypothesis, for each λ ∈ Λ there exists an ideal Iλ in R such that V (nλ) =
V (Iλe). Then

H ⊆ XM \ V (
∑
λ∈Λ Iλe) = XM \ V ((

∑
λ∈Λ Iλ)e).

Since R is a Noetherian ring, there exists a finite subset Λ′ of Λ such that

H ⊆ ∪λ∈Λ′Eλ.

Thus XM is a Noetherian topological space and hence a spectral space. �

Let n be a submodule element of RM . We denote,

c(n) = ∩{I : I is an ideal of R and n 6 Ie}.
Then RM is called a content le-module if n 6 c(n)e for every submodule element
n of M [20]. We call an le-module RM a multiplication le-module if every
submodule element n of M can be expressed as n = Ie for some ideal I of R
[20]. An le-module RM is said to be a pseudo-prime multiplication le-module
if for every pseudo-prime submodule element n of M , there exists an ideal
I of R such that n = Ie. Clearly every multiplication le-module is a weak
multiplication le-module [20].

Suppose that RM is a pseudo-prime multiplication le-module and n is a
pseudo-prime submodule element of M . Then there is an ideal I of R such
that n = Ie, and so I ⊆ (n : e). Hence n = Ie 6 (n : e)e. Also (n : e)e 6 n
and it follows that n = (n : e)e. Thus we prove that an le-module RM is
pseudo-prime multiplication if and only if n = (n : e)e for every pseudo-prime
submodule element n of M .

It is proved in [20] that if RM is a content and pseudo-prime multiplication
le-module, then Prad(n) = (Prad(n) : e)e for every submodule element n of M
and hence RM is topological.

Theorem 2.3. Let RM be a content and pseudo-prime multiplication le-mod-
ule. If Spec(R) is a Noetherian topological space, then XM is a spectral space.

Proof. We show that XM is a Noetherian topological space. Let

V (n1) ⊇ V (n2) ⊇ · · ·

be a descending chain of closed subsets of XM . Then
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Prad(n1) 6 Prad(n2) 6 · · · .

Thus we have the ascending chain

(Prad(n1) : e) ⊆ (Prad(n2) : e) ⊆ · · ·

of radical ideals. Since Spec(R) is Noetherian there is k ∈ N such that for each
i = 1, 2, . . . ,

(Prad(nk) : e) = (Prad(nk+i) : e) = · · · .

Since RM is a content and pseudo-prime multiplication le-module, for each
λ ∈ N,

Prad(nλ) = (Prad(nλ) : e)e.

Thus for each i = 1, 2, . . . we have Prad(nk) = Prad(nk+i) = · · · . This implies
that

V (nk) = V (Prad(nk)) = V (Prad(nk+i)) = V (nk+i) = · · · .

Therefore XM is a Noetherian topological space and whence a spectral space.
�

For a submodule element n of M , the Zariski radical of n, denoted by
Zrad(n), is defined by

Zrad(n) = ∧{p ∈ XM : (n : e) ⊆ (p : e)}.
Now we associate Noetherianness of pseudo-prime spectrum XM of RM and of
the ring R.

Theorem 2.4. If Prad(n) = Zrad(n) for each submodule element n of an le-
module RM , then M is topological. Moreover, if R is Noetherian, then XM is
a Noetherian topological space and so spectral space.

Proof. Let n be a submodule element of M . Then we have

V (n) = V (Prad(n)) = V (Zrad(n))

= V (Zrad((n : e)e))

= V (Prad((n : e)e))

= V ((n : e)e).

Hence by Lemma 1.1(2), M is a topological le-module.
Let R be Noetherian. We show that every open subset of XM is quasi-

compact. Let H be an open subset of XM and let {Eλ}λ∈Λ be an open cover
of H. Then there are submodule elements n and nλ, where H = XM \ V (n)
and Eλ = XM \ V (nλ) for each λ ∈ Λ, such that

H ⊆ ∪λ∈ΛEλ = XM \ ∩λ∈ΛV (nλ).
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By the first part of proof we have V (nλ) = V ((nλ : e)e) for each λ ∈ Λ. Since
R is a Noetherian ring, similarly as in the proof of Theorem 2.2, there exists a
finite subset Λ′ of Λ such that

H ⊆ ∪λ∈Λ′Eλ.

Thus XM is a Noetherian topological space and hence a spectral space. �
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