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SOME REMARKS ON CAMILLO-KRAUSE CONJECTURE

BAHRAM AMIRSARDARI

ABSTRACT. This paper contains some results that grew out of an attempt
to Camillo-Krause conjecture: Is a ring R right Noetherian if for each
nonzero right ideal I of R, R/I is an Artinian right R-module?

1. Introduction

By a celebrated theorem which was proved independently by C. Hopkins
and J. Levitzki in 1939, every (right) Artinian ring is (right) Noetherian (see
for example [7, Theorem 18.13]). Motivated by this theorem, V. Camillo and
G. Krause (in 1972) asked: Is a ring R right Noetherian if every proper cyclic
R-module is Artinian? (see [4]). This question has been investigated by many
authors and answered affirmatively in some special cases (see for example [1],
[6] and [11]). A ring R is called a right Camillo-Krause ring if for each nonzero
right ideal I of R, R/I is a right Artinian module. It can be easily seen that
every commutative Camillo-Krause ring is Noetherian. A. N. Alahmadi [1]
showed that this is also true for every right Camillo-Krause ring which satisfies
in a polynomial identity. In fact if in a right Camillo-Krause ring R every right
ideal contains a two-sided ideal, then R is right Noetherian. In particular this
is the case for every right duo right Camillo-Krause ring.

A ring R is called a right q.f.d ring if each cyclic right R-module has finite
Goldie dimension. A ring R is q.f.d if and only if all cyclic right R-modules
have finitely generated (possibly zero) socle (See [2]). It can be easily seen that
a right Camillo-Krause ring is a right q.f.d ring.

A right V-ring is a ring whose simple right modules are injective and a right
GV-ring is a ring whose simple singular right modules are injective. It is not
hard to show that every right Camillo-Krause right V-ring is right Noetherian.

In this paper, we state some facts about right Camillo-Krause rings and
investigate the relationship between Camillo-Krause rings and injective and
projective modules. It is known that if a right Camillo-Krause ring is not right
Artinian, then it must be a right Ore domain (See [8, Lemma 3.1]). Therefore
discussion about the Noetherianity of a right Camillo-Krause ring is meaningful
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only in the case of a right Ore domain. It is shown in Proposition 2.2 that the
injective hull of every proper cyclic right module over a right Camillo-Krause
ring is semiArtinian and locally Artinian.

In the second section, we will state some results about Camillo-Krause rings
using Jacobson radical. A ring R is called right uniserial if any two right ideals
of R are linearly ordered by inclusion. Somsup et al. [13] have showed that
a serial ring which satisfies both left and right restricted minimum condition
must be Noetherian. As an immediate result it can be seen that every uniserial
Camillo-Krause ring is Noetherian. Recently M. Behboodi and S. Roointan-
Isfahani [3] have introduced and studied the class of almost right uniserial rings
as straightforward common generalization of right uniserial rings and right prin-
cipal ideal domains. We will see in Proposition 2.5 that an almost right uniserial
right Camillo-Krause ring with nonzero Jacobson radical is right Noetherian.
We prove in Theorem 2.6, a right Camillo-Krause ring with nonzero Jacobson
radical J is hereditary right Noetherian if and only if J is finitely generated as
a right module and every maximal right ideal is projective.

In Proposition 2.9 we give a new characterization of rings for which Camillo-
Krause conjecture holds. It is presently not known whether a simple a ring with
right Krull dimension 1 is Noetherian. In Theorem 2.10, it is shown that if R
is a simple right Camillo-Krause ring whose non-simple local right R-modules
are projective or injective, then R is right Noetherian.

2. Right Camillo-Krause ring with nonzero Jacobson radical

In this section we state some results about right Camillo-Krause rings using
Jacobson radical. In fact, we mostly consider the class of right Camillo-Krause
rings with nonzero Jacobson radical. Clearly every right Camillo-Krause do-
main with finitely many maximal right ideals that is not a division ring is in
this class.

Lemma 2.1. Let R be a right Camillo-Krause ring with Jacobson radical J.
If R/J is an injective right R-module, then R is right Noetherian.

Proof. If R is not right Artinian, then it is a domain. In this case if J = 0,
then R is a division ring. If J is nonzero, then R/J is semisimple injective.
Since every simple module is isomorphic to a factor module of R/J, R is a right
V-ring and therefore R is right Noetherian. ]

A module M is called semiArtinian if for every proper submodule N of M,
Soc(M/N) # 0. A ring R is called right semiArtinian if Rp is semiArtinian.
Clearly a right Camillo-Krause ring R is right semiArtinian if and only if it has
nonzero socle if and only if it is right Artinian. A right module is called locally
Artinian if every its finitely generated submodule is Artinian.

Proposition 2.2. Let R be a right Camillo-Krause ring. Then injective hull
of every proper cyclic right module is semiArtinian and locally Artinian.
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Proof. Let I be a right ideal of R and R/I be nonisomorphic to R. We set
E = E(R/I). To show that F is semiArtinian, we prove that E/U has a simple
submodule for every proper submodule U of E. Let x € E and T be the image
of z in E/U. If TR is proper, then the proof is complete. Otherwise, the exact
sequence 0 - U — vR+U — (zR+U)/U — 0 splits and so E has a submodule
K isomorphic to R. But then K N(R/I) # 0, so Soc(K) (hence Soc(R)) is non
zero. Thus R is a right Artinian ring. This shows that F is semiArtinian.

To see E is locally Artinian, it is enough to show that cyclic submodules
of E are Artinian. Assume that xR < E is a cyclic submodule. If zR is not
isomorphic to R, then it is Artinian. So let R be isomorphic to Rp. Since R/I
has essential socle, xRN Soc(R/I) # 0 and xR has essential socle. Therefore
Rp has nonzero socle and so it is Artinian. This proves that E is locally
Artinian. O

Let Mgr be a module. The socle series Soc, (M) is defined by transfinite
induction as follows:

Soco(M) =0,
Soce(M)/Socq—1(M) = Soc(M/Soce—1(M)),

Socq (M) = U Socg(M) if o is a limit ordinal.
B<a

The least « such that Soc, (M) = Socay1(M) is called the Loewy length of M.
It is well known that M is semiArtinian if for some ordinal a, Soc, (M) = M.

Corollary 2.3. Let R be a right Camillo-Krause ring and let the Jacobson
radical J of R be nonzero. Then E(R/J) has Loewy length. Moreover, the
module E(R/J) is of Loewy length < w if and only if R is right Noetherian.

Proof. The first part follows from Proposition 2.2. Clearly every right Camillo-
Krause ring is of right Krull dimension at most 1 and so the second part is by
[11, Theorem 4.3]. O

The following lemma shows that a right Camillo-Krause ring satisfies the
Jacobson conjecture.

Lemma 2.4. Let R be a right Camillo-Krause ring. Then (), J™ = 0.

Proof. If R is Artinian, then J is nilpotent and hence the proof is complete.
Otherwise, R is a domain with right Krull dimension 1. Suppose that T =
Mo, J™ # 0. Since R/T is Artinian, there exists a positive integer n such that
J" = J?" and hence J contains the nonzero idempotent ideal J", contradicting
[10, Lemma 6.3.6]. O

Following M. Behboodi and S. Roointan-Isfahani [3], a ring R is called almost
right uniserial if any two non-isomorphic right ideals of R are linearly ordered
by inclusion. In the following proposition we show that an almost right uniserial
right Camillo-Krause ring is right Noetherian.
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Proposition 2.5. Let R be a right Camillo-Krause ring with Jacobson radical
J. Then:

1) If every principal right ideal contains a two sided ideal, then R is right
Noetherian.

2) If R is an almost right uniserial ring with J = J(R) # 0, then R is right
Noetherian.

3) If J(R) # 0 and R contains a nonzero two sided ideal I such that I is
almost uniserial, then R is right Noetherian.

Proof. 1) Take a right ideal F of R. We show that F is finitely generated.
Let € F be a nonzero element and I < xR be a nonzero two sided ideal
of R. Then R/xR is an R/I-module and so it is an Artinian R/I-module.
Since R/I is right Noetherian, R/xR is a Noetherian R-module. Thus F/zR
is Noetherian and so F' is finitely generated.

2) Since R/J is a Noetherian ring, it is enough to show that J is right
Noetherian. Set F' < J. We show that F' is finitely generated. Let x € F
be a nonzero element. By Lemma 2.4, there exists a positive integer n such
that xR £ J™. Because J is almost right uniserial, for every positive integer n,
either J” < zR, or J" 2 zR. If J® < zR, then R/xR is an R/J™-module and
so it is an Artinian R/J"-module. Since R/J" is right Noetherian, R/zR is
Noetherian. Thus F'/zR is Noetherian and so F is finitely generated. Otherwise
J™ is finitely generated as a right R-module and since R/J™ is an Artinian ring,
hence J is finitely generated as a right R-module. Now, by [11, Theorem 4.3],
we conclude that R is right Noetherian.

3) If R is not Artinian, then it is an uniform domain and so K :=INJ # 0.
Now using a proof similar to part 2, we can show that R is right Noetherian. [

A ring R is called right hereditary if each right ideal of R is projective. A
ring R is called right semihereditary if each finitely generated right ideal of R
is projective.

In [9, Theorem 2.35], necessary and sufficient condition for right Artinian to
be right hereditary is provided. In the following proposition, we state similar
necessary and sufficient conditions for a right Camillo-Krause with nonzero
Jacobson radical to be right hereditary and Noetherian.

Proposition 2.6. Let R be a right Camillo-Krause ring with nonzero Jacobson
radical J. Then the following statements are equivalent:
(i) R is hereditary right Noetherian.
(ii) J and each maximal right ideal m of R are projective as right R-
modules.
(iii) J is finitely generated as a right R-module and each maximal right ideal
m of R is projective as a right R-module.

Proof. (i) = (ii). Clear.
(ii) = (iii). By [11, the Corollary after Theorem 4.3], R is hereditary right
Noetherian and the assertion holds.
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(iii) = (i). Since J is finitely generated, by [11, Theorem 4.3], R is right
Noetherian. Thus R/I has finite length for any right ideal I of R. Now similar
to the proof of [9, Theorem 2.35], the assertion holds. O

Let I be a left ideal of a semiprime Goldie ring R, and @ the quotient ring
of R. Define I* = {q € Q|I¢ C R} and I"* = {q € Q|¢I* C R}. For a
finitely generated projective left ideal I of R, we have I* = Hompg(I, R) and so
I = I'"*. With these notations, we are ready to prove the following proposition.
Note that a right semihereditary ring of finite right Goldie dimension is left
semihereditary (see [12]).

Proposition 2.7. Let R be a semihereditary ring which satisfies both the left
and right Camillo-Krause condition. Then R must be a Noetherian hereditary
ring.

Proof. An Artinian semihereditary is hereditary and so assume that R is not
Artinian. Thus it is an Ore domain. Let Iy C I C --- C R be an ascending
chain of finitely generated left ideals. Choose a nonzero element a in I;. Then
we have a chain of right R-modules a 'R D I DI O --- D R, so that we
have R D alf D al5 O --- D aR. This chain of right ideals terminates, because
R/aR is Artinian. Therefore, al; = al} | for some n € N. Thus I} = I};
and hence I,, = I,,41 by taking stars again and using the fact that each I; is
projective. So R satisfies a.c.c on finitely generated left ideals and so it is left
Noetherian. Similarly we see R is right Noetherian and so R is a hereditary
Noetherian ring. O

Let M be an R-module. A factor module N/K, where K < N are submod-
ules of M, is called proper subfactor of M if N is a proper submodule of M.
In [6], Er gave a necessary and sufficient condition on a right Camillo-Krause
ring to be Noetherian in terms of special hollow subfactors of Rg. In the fol-
lowing proposition we prove another result for right Camillo-Krause rings with
nonzero Jacobson radical.

Proposition 2.8. Let R be a right Camillo-Krause ring with J # 0. Then R
is right Noetherian if and only if Rgr has no a non-finitely generated subfactor
with all proper subfactors non-faithful.

Proof. (=) Obvious.

(<) Suppose that R is not right Noetherian. Therefore it must be a do-
main, so that (nonzero) Jacobson radical is non-nilpotent. Then Rp contains a
non-finitely generated submodule M. Let a be a nonzero element of M. Then,
by assumption, N = M/aR is non-finitely generated. N is Artinian R-module
and so let C' be minimal among non-finitely generated submodules of N. Now
we claim that each proper subfactors of C is non-faithful. Let D be a proper
subfactor of C. Thus D is finitely generated Artinian module and the descend-
ing chain D D DJ D DJ? D --- terminates. Therefore, there exists an integer
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n such that DJ" = DJ"! and hence DJ" = (DJ").J. Now, by Nakayama’s
Lemma, we conclude DJ" = 0. This proves our claim. ([

In the following for a module M, by codim(M) = n we mean M is of dual
Goldie (hollow) dimension n.

Proposition 2.9. Let R be a right Camillo-Krause ring. Then R is right
Noetherian if and only if every proper cyclic right R-module which is local is
Noetherian.

Proof. Assume that every proper local cyclic right R-module is a Noetherian
module. To show R is Noetherian it is enough to prove for every nonzero right
ideal I of R the module R/I is Noetherian. We will show this by induction on
codim (R/I), which is finite, because the module R/I is Artinian. The assertion
holds if codim (R/I) = 0, so assume that R/I # 0. It follows from [11, Lemma
3.1] that R/I has a local cyclic submodule C' such that codim((R/I)/C) <
codim(R/I). The induction hypothesis implies that the module (R/I)/C is
Noetherian. On the other hand, the module C' is Noetherian by assumption.
Thus we conclude that R is right Noetherian, as desired. The converse is
obvious. O

Recall that a module M is called a CS module (or an extending module) if
every submodule of M is essential in a direct summand of M.
We finish this section with the following theorem:

Theorem 2.10. Let R be a simple right Camillo-Krause ring. If every non-
stmple local right R-module is projective or injective, then R s right Noetherian.

Proof. We may assume that R is a domain and every non-simple local right
R-module is projective or injective. First we claim, for every nonzero right
ideal I of R, the module R/I is a direct sum of a semisimple module and
an injective module. To show this we use induction on codim(R/I). This is
a finite number since the module R/I is Artinian. If codim(R/I) = 1, then
the assertion is trivial. So assume that codim(R/I) = n with n > 1. Since
R/I is Artinian, we can write R/I as a finite sum of n local submodules, say
R/I = Hy +---+ H,. If all H; are simple, then R/I is semisimple, and
so the assertion holds. Otherwise, we may assume that H, is not simple.
Since n > 1, we have codim((R/I)/H,) < codim(R/I) and so the induction
hypothesis implies that the module (R/T)/H,, is a direct sum of a semisimple
module and an injective module. On the other hand, H, is cyclic singular
module and so it can not be projective. Hence it is injective and so we have
R/I = H, @ (R/I)/H,. This proves claim. Now [5, Corollary 13.4] implies
that every cyclic singular right R-module is CS. Hence, by [8, Theorem 9.5], R
is right Noetherian. (I
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