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SOME ONE-DIMENSIONAL NOETHERIAN DOMAINS AND

G-PROJECTIVE MODULES

Kui Hu, Hwankoo Kim, and Dechuan Zhou

Abstract. Let R be a one-dimensional Noetherian domain with quotient

field K and T be the integral closure of R in K. In this note we prove
that if the conductor ideal (R :K T ) is a nonzero prime ideal, then every

finitely generated reflexive (and hence finitely generated G-projective)
R-module is isomorphic to a direct sum of some ideals.

1. Introduction

Throughout this note, all rings are commutative with identity and all mod-
ules are unitary. Recall that an R-module M is said to be Gorenstein projective
(G-projective for short) in [5] if there exists an exact sequence · · · −→ P1 −→
P0 −→ P 0 −→ P 1 −→ · · · of projective R-modules with M = ker(P 0 −→ P 1)
such that HomR(−, Q) leaves the sequence exact whenever Q is a projective
R-module. The concept of the Gorenstein Dedekind domain was put forward
in [4]. A domain R is a Gorenstein Dedekind domain (G-Dedekind domain
for short) if and only if any submodule of any free R-module is G-projective,
if and only if R is a Noetherian ring and any nonzero ideal of R is a diviso-
rial ideal. For more descriptions of the G-Dedekind domain, one can refer to
[18, Theorem 11.7.7]. Recall that a module M is said to be torsionless if the
evaluation map ΦM : M −→ M∗∗ is injective and to be reflexive if ΦM is an
isomorphism. We say that a domain is a reflexive domain if every torsionless
module of finite rank is reflexive. It can be seen from [18, Theorem 11.7.7](5)
that G-Dedekind domains are exactly Noetherian reflexive domains. It was also
shown in [18, Lemma 11.6.9] that every finitely generated G-projective module
is reflexive.
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Following the terminology of Matlis in [12], a domain is said to have property
FD if every finitely generated torsion-free module is isomorphic to a direct sum
of some ideals. Recall that a domain R is called an NWF domain if every
ideal of R can be generated by two elements (see [18, Definition 11.7.10]). An
integral domain R is called a Bass domain if R is an NWF domain with module-
finite integral closure. Bass proved in [1] that every Bass domain has property
FD. Matlis proved in [12] that every local NWF domain also has property FD.
About twenty years later, Rush proved in [17] that every NWF domain has
property FD. A nonzero ideal of an integral domain is said to be stable if it is
projective over its ring of endomorphisms. Following [2], an integral domain
R is called a Warfield domain if, given any R-submodule A of the quotient
field of R, all A-torsionless EndR(A)-modules of finite rank are A-reflexive.
Olberding proved in [15, Theorem 5.3] that a domain R is a Warfield domain if
and only if every torsionless R-module is isomorphic to a direct sum of stable
ideals. Inspired by these works, we investigate domains over which every finitely
generated reflexive module is isomorphic to a direct sum of some ideals. We
get that if R is a one-dimensional Noetherian domain such that the conductor
ideal is nonzero and prime, then every finitely generated reflexive R-module is
isomorphic to a direct sum of some ideals.

For unexplained concepts and notations, one can refer to [6, 11,14,16].

2. Decomposition of finitely generated reflexive modules

For any ideal I, we denote by V (I) the set of prime ideals which contain I.
For an R-module M , we also denote by trR(M) the trace ideal of M . We begin
with the following observation about one-dimensional Noetherian domains.

Theorem 2.1. Let R be a one-dimensional Noetherian domain and M be a
finitely generated projective R-module. Then M is isomorphic to a direct sum
of some ideals, namely, M ∼= R ⊕ · · · ⊕ R ⊕ J , where this direct sum is finite,
and if it is a direct sum of n ideals, then the number of R’s is at least n− 1.

Proof. Since M is projective, we have that trR(M) = R. So by [17, Lemma
4.2], we get that M ∼= R⊕N for some submodule N . Since M is projective, we
get that N is also projective. Thus the result can be obtained by induction. □

A complete projective resolution of the form

P := · · · −→ P
f−→ P

f−→ P
f−→ P −→ · · ·

is called a strongly complete projective resolution and denoted by (P, f). Fol-
lowing [3, Definition 2.1], an R-module M is said to be strongly Gorenstein
projective (SG-projective for short) if M ∼= ker(f) for some strongly complete
projective resolution (P, f).

It was proved in [17, Theorem 4.3] that every finitely generated torsion-free
module over an NWF domain is isomorphic to a direct sum of some ideals. We
have the following characterization for NWF domains.
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Theorem 2.2. Let R be a Noetherian domain. Then R is an NWF domain if
and only if every maximal ideal of R is SG-projective.

Proof. First we prove the necessity part. If R is an NWF domain, then every
ideal (hence every maximal ideal) of R is SG-projective by [8, Theorem 3.12].

Conversely, we assume that every maximal ideal M of R is SG-projective.
Then MM is an SG-projective RM -module. So RM is a local NWF domain by
[10, Theorem 2.25] for every maximal ideal M of R. Therefore R is an NWF
domain by [10, Theorem 2.27]. □

Let R be an integral domain with quotient field K. A fractional ideal I of R
is just an R-submodule of K such that rI ⊆ R for some nonzero r ∈ R. Then a
fractional ideal I of R is said to be invertible if IJ = R for some fractional ideal
J of R. For a nonzero fractional ideal I of R, set I−1 := {α ∈ K | αI ⊆ R}.
Then it is well known that a fractional ideal I of R is invertible if and only if
II−1 = R.

We also have the following observation about the conductor ideal.

Lemma 2.3. Let R be a one-dimensional Noetherian domain with quotient
field K and T be the integral closure of R in K such that the conductor ideal
C := (R :K T ) is not zero. Let P be a prime ideal of R. Then P is projective
if and only if P /∈ V (C).

Proof. If P /∈ V (C), then P +C = R and P is invertible (hence projective) by
[10, Lemma 1.8].

If P ∈ V (C), then we have C ⊂ P and CP = (RP : TP ) ⊂ PP ̸= RP .
This means that RP is not integrally closed (since RP ̸= TP ). So P is not
invertible. □

It was proved in [10, Theorem 1.10] that a one-dimensional Noetherian do-
main is a G-Dedekind domain if and only if every prime ideal which contains the
conductor ideal is G-projective. A step further, we have the following corollary.

Corollary 2.4. Let R be a one-dimensional Noetherian domain with quotient
field K and its integral closure T in K. Denote the conductor ideal (R :K T )
by C. Then R is an NWF domain if and only if any prime ideal P of R which
contains C is SG-projective.

Proof. Notice that every invertible ideal is projective, and hence SG-projective.
Thus the result follows from Theorem 2.2 and Lemma 2.3. □

In what follows, we investigate the decomposition of finitely generated re-
flexive modules over one-dimensional Noetherain domains.

Theorem 2.5. Let R be a one-dimensional Noetherian domain with quotient
field K and the integral closure T . If for any prime ideal P which contains
the conductor ideal C := (R :K T ), P−1 = (P : P ) is an NWF domain, then
every finitely generated reflexive R-module is isomorphic to a direct sum of
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some ideals. Furthermore, if R is a G-Dedekind domain, then R is also an
NWF domain.

Proof. LetM be a finitely generated reflexive R-module. Since R is Noetherian,
M has a maximal projective direct summand Q. That is to say, M = Q ⊕N
for some N which has no projective direct summand. If the rank of N is one,
then we have done since the projective module Q is decomposable by Theorem
2.1. So we assume that rank(N) ⩾ 2. Denote the trace ideal trR(N) by J . We
claim that V (J) ∩ V (C) ̸= ∅. Otherwise, J + C will be contained in no prime
ideals, and so must be R. This means that J is invertible, and so must be R
by [10, Lemma 1.8] (the case that C = 0 is obvious). Since N is also reflexive,
by [17, Theorem 4.2], N will have a direct summand which is isomorphic to R.
This contradicts the maximality of Q. Let J ⊂ P for some P ∈ V (C). Since
P ∈ V (C), we have P is not invertible and P−1 = (P : P ) is a ring. Also
notice that by [17, Theorem 4.1], J−1 is also a ring and N is a J−1-module.
Obviously P−1 ⊂ J−1. So J−1 is also an NWF domain as an overring of
the NWF domain P−1. Thus, as a finitely generated torsion-free module over
J−1, N is isomorphic to a direct sum of some ideals. Since both Q and N are
decomposable, M is isomorphic to a direct sum of some ideals.

Under the above condition, if R is a G-Dedekind domain, then every finitely
generated torsion-free module is G-projective, and hence reflexive and, by the
result of the above paragraph, is isomorphic to a direct sum of some ideals.
Therefore every ideal of R can be generated by two elements. So R is an NWF
domain. □

Corollary 2.6. Let R be a one-dimensional Noetherian domain with quotient
field K and its integral closure T in K. If Pm+1 ⊂ (R :K T ) ⊂ Pm for some
nonzero prime ideal P of R and some positive integer m such that P−1 is an
NWF domain, then every finitely generated reflexive R-module is isomorphic
to a direct sum of some ideals.

Proof. Just notice that P is the only prime ideal which contains the conductor
ideal. □

Example 2.7. The polynomial domain R=Q[X3, X5, X7] is not aG-Dedekind
domain. But every finitely generated reflexive R-module is isomorphic to a
direct sum of some ideals.

Proof. First, we note that the quotient field K of R is Q(X) and the integral
closure T of R is Q[X]. It is routine to check that the conductor ideal (R :K
T ) = X5Q[X]. Let P be the ideal generated by the set {X3, X5, X7}. Then
P is maximal. It can be seen that P 2 ⊂ X5Q[X] ⊂ P . Some calculation
shows that P−1 = Q +X2Q[X]. This is an NWF domain since every ideal is
2-generated by [10, Theorem 2.9]. Therefore every finitely generated reflexive
R-module is isomorphic to a direct sum of some ideals by Corollary 2.6. Since
P−1 = R+RX2+RX4 can not be generated by two elements as an R-module,
R is not reflexive, and hence not a G-Dedekind domain by [13, Theorem 40]. □
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Corollary 2.8. Let R be a one-dimensional Noetherian domain with quotient
field K and its integral closure T in K. If (R :K T ) = P for some nonzero
prime ideal P of R, then every finitely generated reflexive R-module (hence also
every finitely generated G-projective R-module) is isomorphic to a direct sum
of some ideals.

Proof. Just notice that P is the only prime ideal which contains the conductor
ideal and P−1 = T is a Dedekind domain. □

Example 2.9. The polynomial domain R = Q + XnQ[X] (n ⩾ 3) is not a
G-Dedekind domain. But every finitely generated reflexive R-module is iso-
morphic to a direct sum of some ideals.

Proof. Just notice that the conductor ideal XnQ[X] is prime and can not be
generated by two elements. The result comes from [9, Theorem 3.10] and
Corollary 2.8. □

Let R be a one-dimensional Noetherian domain with quotient field K and
integral closure T . We first consider the case when (R :K T ) is a maximal
ideal.

Lemma 2.10. Let R,K, T be rings as mentioned above and M = (R :K T ) be
a maximal ideal of R. Then the following statements are equivalent:

(1) T is a G-projective R-module;
(2) TM is a G-projective RM -module;
(3) R is a G-Dedekind domain.

Proof. (1)⇒(2) This is obvious since R is Noetherian.
(2)⇒(3) Notice that MM = (R :K T )M = (RM :K TM ), i.e., MM = (TM )−1.

Since (RM :K TM ) ̸= 0, we have TM is a finitely generated RM -module by
[10, Proposition 1.9]. So we have (Ext1R(M,R))M = Ext1RM

(MM , RM ) =

Ext1RM
(T−1

M , RM ) = 0 by [18, Lemma 11.6.9]. For those maximal ideals other
than M , say, P ̸= M , we have P is projective. So RP is a Dedekind domain
and (Ext1R(M,R))P = Ext1RP

(MP , RP ) = 0 also. Since Ext1R(M,R) is locally

zero, we have Ext1R(M,R) = 0. So R is a G-Dedekind domain by [9, Theorem
3.10].

(3)⇒(1) Just notice that T is a finitely generated torsion-free R-module. □

Theorem 2.11. Let R,K, T be rings as mentioned above. If T is not a G-
projective R-module, then every finitely generated G-projective R-module is pro-
jective.

Proof. Let M be a finitely generated G-projective R-module. Then M is reflex-
ive by [18, Lemma 11.6.9]. So M ∼= I1⊕I2⊕· · ·⊕Ik for some ideals. Since M is
G-projective, these ideals are G-projective. So we can assume that M is just a
G-projective ideal. If Im(f) ⊈ (R :K T ) for some f ∈ M∗ = HomR(M,R), then
Im(f) + (R :K T ) = R, which implies that Im(f) is invertible by [10, Lemma
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1.8]. So the sequence M −→ Im(f) −→ 0 will split. This implies that M must
be isomorphic to Im(f) and projective also. If Im(f) ⊂ (R :K T ) for every
f ∈ M∗, then tm (t ∈ T,m ∈ M) is corresponding to an element of M∗∗ by
defining tm(f) = tf(m). Since M = M∗∗, we have tm ∈ M , which means
that M is also a T -ideal. Since T is one-dimensional Notherian, there are only
finitely many prime T -ideals containing M . So TM is a semi-local Dedekind
domain. Hence TM is a principal ideal domain. Thus we have TM

∼= MM is
also a G-projective RM -ideal. But, by Lemma 2.10, we will have that T is also
a G-projective R-module, which contradicts the condition. This contradiction
shows that there exists some f ∈ M∗ with Im(f) ⊈ (R :K T ), and this means
that M is projective. □

Example 2.12. The polynomial domain R = Q+XnQ[X] ⊂ Q[X] (n ⩾ 3) is
not a G-Dedekind domain. But every finitely generated G-projective R-module
is projective.

Proof. Just notice that the integral closure of R in its quotient field is Q[X]
and the conductor ideal XnQ[X] is maximal. The result comes from the fact
that R is not a G-Dedekind domain and Lemma 2.10 and Theorem 2.11. □

3. Divisorial ideals of the domain Q + XnQ[X]

We begin this section with a characterization of G-Dedekind domains by di-
visorial ideals. To do this, first we introduce some terminology and notations.
For a nonzero fractional ideal I of an integral domain R, set Iv := (I−1)−1.
Then a fractional ideal I is said to be divisorial (or a v-ideal) if Iv = I. Over
a general ring R, Enochs and Jenda defined in [5] the Gorenstein projective
dimension, denoted by GpdR(−), for arbitrary (non-finite) modules via reso-
lutions with Gorenstein projective modules. The Gorenstein global dimension
of a ring R, denoted G-gldim(R), is the supremum of the Gorenstein projec-
tive dimensions of all R-modules ([18, Definition 11.4.1]). Denote by FPD the
classical finitistic projective dimension of R. The (left) finitistic Gorenstein
projective dimension of R, denoted by FGPD(R), is defined as

FGPD(R) = sup

{
GpdR(M)

∣∣∣∣ M is a left R-module with finite
Gorenstein projective dimension

}
.

Theorem 3.1. Let R be a one-dimensional Noetherian domain with quotient
field K. Then the following are equivalent:

(1) every divisorial ideal of R is G-projective;
(2) GpdR(I) < ∞ for any divisorial ideal I of R;
(3) GpdR(P ) < ∞ for any prime ideal P of R;
(4) R is a G-Dedekind domain.

Proof. (1)⇒ (2) This is obvious.
(2)⇒ (3) This comes from the fact that any nonzero prime ideal of a one-

dimensional Noetherian domain is divisorial by [13, Theorem 37].
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(3)⇒ (4) By [18, Theorem 4.3.21], FPD(R) = dim(R) = 1. Also notice
that FGPD(R) = FPD(R) by [7, Theorem 2.28]. By hypothesis we get that
GpdR(P ) ⩽ 1 for any prime ideal P of R. Thus, as in the proof of [10,
Proposition 1.7], we get that idR(K/R) ⩽ 1, which means that R is Gorenstein.
Since R is a one-dimensional Noetherian domain, we get that R is in fact a G-
Dedekind domain.

(4)⇒ (1) This is obvious since G-gldim(R) ⩽ 1. □

Example 3.2. Set R := Q + X3Q[X]. Then the ideal I := (X3, X4, X5)
is divisorial. Since I is not G-projective by [10, Example 1.3], R is not a
G-Dedekind domain.

Next we consider the divisorial ideals of the domain Q +XnQ[X] (n ⩾ 2).
We will show that any two non-projective divisorial ideals of R are isomorphic
to each other.

Proposition 3.3. Let R be a one-dimensional Noetherian domain with quo-
tient field K and integral closure T such that (R :K T ) is maximal and T is
a PID. If I is a divisorial ideal of R, then either I is projective or I ∼= T as
R-modules.

Proof. As in the proof of Theorem 2.11, if I is not projective, then Im(f) ⊂
(R :K T ) for every f ∈ I∗ = HomR(I,R). This means that I is also an ideal of
T . Because T is a principal ideal domain, we get that I = aT for some a ∈ I.
Thus I ∼= T as R-modules. □

Since the domain R = Q+XnQ[X] (n ⩾ 2) satisfies the condition of Propo-
sition 3.3, we get that the divisorial ideals of R can be classified into two classes:
one is a class of projective ideals and the other is a class of ideals which are
isomorphic to Q[X]. Next we study some properties of invertible ideals of R.

Proposition 3.4. Let R be a one-dimensional Noetherian domain with quo-
tient field K and integral closure T . If α, β are two elements of T prime to
each other, then (R :K T ) ⊂ Rα+Rβ.

Proof. Since α is prime to β, there exist u, v ∈ T such that uα+vβ = 1. Thus,
for any x ∈ (R :K T ), we have x = uxα+ vxβ ∈ Rα+Rβ. □

Theorem 3.5. Let R be a one-dimensional Noetherian domain with quotient
field K and integral closure T such that the conductor ideal (R :K T ) is max-
imal. If α ∈ T and β ∈ (R :K T ) such that some power of α is contained in
(R :K T ), then the fractional R-ideal I = (1 + α, β) is invertible.

Proof. Assume that αn ∈ (R :K T ) for some positive integer n. Let J = (1 +∑n−1
i=1 (−α)i, β) be another fractional R-ideal. Then IJ = (1+ (−1)n+1αn, β+

βα, β+β(
∑n−1

i=1 (−α)i), β2) is an ideal of R such that IJ +(R :K T ) = R since
1 + (−1)n+1αn is not inside the maximal ideal (R :K T ). Therefore IJ , and
hence I is invertible by [10, Lemma 1.8]. □
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Example 3.6. Set R := Q + XnQ[X] ⊂ Q[X] (n ⩾ 2). Then the following
fractional R-ideals (1 +X,Xn) and (1 + 2X +X2, Xn +Xn+1) are invertible.

Proof. Just notice that the conductor ideal XnQ[X] is maximal. □

Let R be a domain with quotient field K. We denote the group of invertible
ideals of R by Inv(R). It contains the group Prin(R) of fractional principal
ideals aR, a ∈ K \ {0}. The factor group Pic(R) = Inv(R)/Prin(R) is called
the Picard group of R [14, Definition 12.5].

Theorem 3.7. Let R = Q+XnQ[X] (n ⩾ 2). Then the Picard group of R is
infinite.

Proof. Let I = (1 + Xn−1, Xn). Then I is invertible by Theorem 3.5. We
do some calculations to show that any power of I is not principal. Notice
that I2 = (1 + 2Xn−1 + X2n, Xn + X2n−1, X2n) and 1 + 2Xn−1 + X2n is
prime to X2n. Then we have XnQ[X] ⊂ I2 by Proposition 3.4. Thus we have
I2 = (1 + 2Xn−1, Xn) and inductively Ik = (1 + kXn−1, Xn). □
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