• 제목/요약/키워드: quasi-ideals

검색결과 52건 처리시간 0.023초

Intuitionistic fuzzy interior ideals in ordered semigroup

  • 박철환
    • 한국지능시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.118-122
    • /
    • 2007
  • In this paper, we consider the intuitionistic fuzzification of the notion of a interior ideal in ordered semigroup S, and investigate some properties of such ideals. In terms of intuitionistic fuzzy set, characterizations of intuitionistic fuzzy interior ideals in ordered semigroups are discussed. Using a collection of interior ideals with additional conditions, an intuitionistic fuzzy interiror ideal is constructed. Natural equivalence relations on the set of all intuitionistic fuzzy interior ideals of an ordered semigroup are investigated. We also give a characterization of a intuitionistic fuzzy simple semigroup in terms of intuitionistic fuzzy interior ideals.

ON RINGS WHOSE ESSENTIAL MAXIMAL RIGHT IDEALS ARE GP-INJECTIVE

  • Jeong, Jeonghee;Kim, Nam Kyun
    • 대한수학회논문집
    • /
    • 제37권2호
    • /
    • pp.399-407
    • /
    • 2022
  • In this paper, we continue to study the von Neumann regularity of rings whose essential maximal right ideals are GP-injective. It is proved that the following statements are equivalent: (1) R is strongly regular; (2) R is a 2-primal ring whose essential maximal right ideals are GP-injective; (3) R is a right (or left) quasi-duo ring whose essential maximal right ideals are GP-injective. Moreover, it is shown that R is strongly regular if and only if R is a strongly right (or left) bounded ring whose essential maximal right ideals are GP-injective. Finally, we prove that a PI-ring whose essential maximal right ideals are GP-injective is strongly π-regular.

TERMINAL SPACES OF MONOIDS

  • Amartya Goswami
    • 대한수학회논문집
    • /
    • 제39권1호
    • /
    • pp.259-266
    • /
    • 2024
  • The purpose of this note is a wide generalization of the topological results of various classes of ideals of rings, semirings, and modules, endowed with Zariski topologies, to r-strongly irreducible r-ideals (endowed with Zariski topologies) of monoids, called terminal spaces. We show that terminal spaces are T0, quasi-compact, and every nonempty irreducible closed subset has a unique generic point. We characterize rarithmetic monoids in terms of terminal spaces. Finally, we provide necessary and sufficient conditions for the subspaces of r-maximal r-ideals and r-prime r-ideals to be dense in the corresponding terminal spaces.

ON QUASI COVERED IDEALS AND QUASI BASES OF ORDERED SEMIGROUPS

  • M. Y. Abbasi;Shahnawaz Ali;S. A. Khan
    • 호남수학학술지
    • /
    • 제46권3호
    • /
    • pp.500-514
    • /
    • 2024
  • This paper explores the concepts of quasi covered ideal, quasi base and the greatest quasi covered ideal within the context of an ordered semigroup, extending the study of algebraic structures to incorporate both the algebraic and order theoretic perspectives. An ordered semigroup provides a rich framework for investigating the interplay between algebraic and order structure. Also, we provide the conditions for the greatest ideal to be quasi covered ideal and develop the fundamental properties with implications of quasi covered ideal of an ordered semigroup. Moreover, we study the relationship between covered ideal with quasi covered ideal, greatest ideal with quasi covered ideal and the greatest quasi covered ideal with quasi base of an ordered semigroup.

k-NIL RADICAL IN BCI-ALGEBRAS II

  • Jun, Y.B;Hong, S.M
    • 대한수학회논문집
    • /
    • 제12권3호
    • /
    • pp.499-505
    • /
    • 1997
  • This paper is a continuation of [3]. We prove that if A is quasi-associative (resp. an implicative) ideal of a BCI-algebra X then the k-nil radical of A is a quasi-associative (resp. an implicative) ideal of X. We also construct the quotient algebra $X/[Z;k]$ of a BCI-algebra X by the k-nhil radical [A;k], and show that if A and B are closed ideals of BCI-algebras X and Y respectively, then

  • PDF

ON QUASI-RIGID IDEALS AND RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Kwak, Tai-Keun
    • 대한수학회보
    • /
    • 제47권2호
    • /
    • pp.385-399
    • /
    • 2010
  • Let $\sigma$ be an endomorphism and I a $\sigma$-ideal of a ring R. Pearson and Stephenson called I a $\sigma$-semiprime ideal if whenever A is an ideal of R and m is an integer such that $A{\sigma}^t(A)\;{\subseteq}\;I$ for all $t\;{\geq}\;m$, then $A\;{\subseteq}\;I$, where $\sigma$ is an automorphism, and Hong et al. called I a $\sigma$-rigid ideal if $a{\sigma}(a)\;{\in}\;I$ implies a $a\;{\in}\;I$ for $a\;{\in}\;R$. Notice that R is called a $\sigma$-semiprime ring (resp., a $\sigma$-rigid ring) if the zero ideal of R is a $\sigma$-semiprime ideal (resp., a $\sigma$-rigid ideal). Every $\sigma$-rigid ideal is a $\sigma$-semiprime ideal for an automorphism $\sigma$, but the converse does not hold, in general. We, in this paper, introduce the quasi $\sigma$-rigidness of ideals and rings for an automorphism $\sigma$ which is in between the $\sigma$-rigidness and the $\sigma$-semiprimeness, and study their related properties. A number of connections between the quasi $\sigma$-rigidness of a ring R and one of the Ore extension $R[x;\;{\sigma},\;{\delta}]$ of R are also investigated. In particular, R is a (principally) quasi-Baer ring if and only if $R[x;\;{\sigma},\;{\delta}]$ is a (principally) quasi-Baer ring, when R is a quasi $\sigma$-rigid ring.

RINGS WITH IDEAL-SYMMETRIC IDEALS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.1913-1925
    • /
    • 2017
  • Let R be a ring with identity. An ideal N of R is called ideal-symmetric (resp., ideal-reversible) if $ABC{\subseteq}N$ implies $ACB{\subseteq}N$ (resp., $AB{\subseteq}N$ implies $BA{\subseteq}N$) for any ideals A, B, C in R. A ring R is called ideal-symmetric if zero ideal of R is ideal-symmetric. Let S(R) (called the ideal-symmetric radical of R) be the intersection of all ideal-symmetric ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an ideal-symmetric ideal of a ring are obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any ring R, we have $S(M_n(R))=M_n(S(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a quasi-Baer ring R, R is semiprime if and only if R is ideal-symmetric if and only if R is ideal-reversible.

GRADED BETTI NUMBERS OF GOOD FILTRATIONS

  • Lamei, Kamran;Yassemi, Siamak
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1231-1240
    • /
    • 2020
  • The asymptotic behavior of graded Betti numbers of powers of homogeneous ideals in a polynomial ring over a field has recently been reviewed. We extend quasi-polynomial behavior of graded Betti numbers of powers of homogenous ideals to ℤ-graded algebra over Noetherian local ring. Furthermore our main result treats the Betti table of filtrations which is finite or integral over the Rees algebra.