• Title/Summary/Keyword: quadratic equations

Search Result 346, Processing Time 0.025 seconds

GENERATION OF RING CLASS FIELDS BY ETA-QUOTIENTS

  • Koo, Ja Kyung;Shin, Dong Hwa;Yoon, Dong Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.131-146
    • /
    • 2018
  • We generate ring class fields of imaginary quadratic fields in terms of the special values of certain eta-quotients, which are related to the relative norms of Siegel-Ramachandra invariants. These give us minimal polynomials with relatively small coefficients from which we are able to solve certain quadratic Diophantine equations concerning non-convenient numbers.

A FIXED POINT APPROACH TO THE ORTHOGONAL STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS

  • JEON, YOUNG JU;KIM, CHANG IL
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.627-634
    • /
    • 2015
  • In this paper, we investigate the following orthogonally additive-quadratic functional equation f(2x + y) - f(x + 2y) - f(x + y) - f(y - x) - f(x) + f(y) + f(2y) = 0. and prove the generalized Hyers-Ulam stability for it in orthogonality spaces by using the fixed point method.

Linear quadratic control problem of delay differential equation

  • Shim, Jaedong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.208-213
    • /
    • 1992
  • In this paper we are concerned with optimal control problems whose costs am quadratic and whose states are governed by linear delay equations and general boundary conditions. The basic new idea of this paper is to Introduce a new class of linear operators in such a way that the state equation subject to a starting function can be viewed as an inhomogeneous boundary value problem in the new linear operator equation. In this way we avoid the usual semigroup theory treatment to the problem and use only linear operator theory.

  • PDF

PRECONDITIONING $C^1$-QUADRATIC SPLINE COLLOCATION METHOD OF ELLIPTIC EQUATIONS BY FINITE DIFFERENCE METHOD

  • Woo, Gyung-Soo;Kim, Seok-Chan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.17-27
    • /
    • 2001
  • We discuss a finite difference preconditioner for the$C^1$ Lagrance quadratic spline collocation method for a uniformly elliptic operator with homogeneous Dirichlet boundary conditions. Using the generalized field of values argument, we analyzed eigenvalues of the matrix preconditioned by the matrix corresponding to a finite difference operator with zero boundary condition.

  • PDF

A QUADRATICALLY CONVERGENT ITERATIVE METHOD FOR NONLINEAR EQUATIONS

  • Yun, Beong-In;Petkovic, Miodrag S.
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.487-497
    • /
    • 2011
  • In this paper we propose a simple iterative method for finding a root of a nonlinear equation. It is shown that the new method, which does not require any derivatives, has a quadratic convergence order. In addition, one can find that a hybrid method combined with the non-iterative method can further improve the convergence rate. To show the efficiency of the presented method we give some numerical examples.

A General Uniqueness Theorem concerning the Stability of AQCQ Type Functional Equations

  • Lee, Yang-Hi;Jung, Soon-Mo
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.291-305
    • /
    • 2018
  • In this paper, we prove a general uniqueness theorem which is useful for proving the uniqueness of the relevant additive mapping, quadratic mapping, cubic mapping, quartic mapping, or the additive-quadratic-cubic-quartic mapping when we investigate the (generalized) Hyers-Ulam stability.

Quick and Accurate Computation of Voltage Stability Margin

  • Karbalaei, Farid;Abasi, Shahriar
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • It is well known that the behavior of PV curves is similar to a quadratic function. This is used in some papers to approximate PV curves and calculate the maximum-loading point by minimum number of power flow runs. This paper also based on quadratic approximation of the PV curves is aimed at completing previous works so that the computational efforts are reduced and the accuracy is maintained. To do this, an iterative method based on a quadratic function with two constant coefficients, instead of the three ones, is used. This simplifies the calculation of the quadratic function. In each iteration, to prevent the calculations from diverging, the equations are solved on the assumption that voltage magnitude at a selected load bus is known and the loading factor is unknown instead. The voltage magnitude except in the first iteration is selected equal to the one at the nose point of the latest approximated PV curve. A method is presented to put the mentioned voltage in the first iteration as close as possible to the collapse point voltage. This reduces the number of iterations needed to determine the maximum-loading point. This method is tested on four IEEE test systems.