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Linear Quadratic Control Problem of Delay Differential Equation

Shim, Jaedong

Korea Institute of Technology and Education

Abstract

In this paper we are concerned with optimal control
problems whose costs are quadratic and whose states are
governed by linear delay equations and general boundary
conditions. The basic new idea of this paper is to
introduce a new class of linear operators in such a way that
the state equation subject to a starting function can be
viewed as an inhomogeneous boundary value problem in
the new linear operator equation. In this way we avoid the
usual semigroup theory treatment to the problem and use

only linear operator theory.

1. latroduction

Let R be the field of all real numbers and let ®" be

the Euclidean real Hilbert Space of finite dimension n(n 2

I integer). For given 0 < T < 1y < 90 [-T.1;] be an compact

interval. Also for given integer q, let Rq denote the Hilbert

Space of X [-tu] - R such that
1

3 of

/; ll B
Ixl = ” X (L)x(t) dt)z < ® The inner product {,
(S 1

o 4
Xq is denoted by (x.y/ J X Oy dt . For aeR®,
F]

1
lal = (01'01)2. Let Let % < a < b < % be real numbers.
L[a.b] will denote the space of equivalence class of all
square integrable functions from [a,b] into R". AC[ab]

will denote the space of the absolutely continugus
functions from [a,b] into R°. x[, y) denote the restriction of

x to [ab].
Consider a linear delay differential equation
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(1-1) (1) = ApOxE) + Ayexe-1) + (1), t €[0,]
f@), t €[-1,0]
where A(t), Aj(t) are n X n real matrix valued

functions whose columns are in Ry and f € Ry. Equation

X(t)

(1-1) is the simple delay-differential equation. However,
analogous properties to those listed below can be derived
for more general types of equations having time-varing
delay, multiple delays, and so on.

It 15 well known that there exists a unique real
continwous solution which satisfy (1-1) a.e on [T, )] when
the given initial function x(t) = f(t) is coatinuous on
[-1. 0]. In Halany[6] he discussed about the solution of
equation(l-1) when the initial function is continuous, and
found the solution in terms of fundamental matrix solution
utilizing the adjoint systems. But our equation is different
from[4] in that the initial function is in L}{-1.0]; %*). 1

psee.

In section 2 we introduce a new linear operator in
such a way that the state equation subject to a starting
function can be viewed as an inhomogenious boundary
problem, and derive the adjoint operator of new operator,
and then define the formal adjoint operator which will be
play an important role in the charaterization of the optimal
control.

In section 3 we discuss about fundamental matrix
solution of (1-1) and adjoint system, and find the relation
between two matrices. And then we discuss the solution of
delay operator equations. Also we characterize the
fundamental matrix which will be useful in practice.

In section 4 we consider the optimal control over a
closed convex subset of L"i[-—t,tl] and develop the
necessary and sufficient conditions for an optimal-response

pair 1n terms of adjoint equations and inclusions.



2. Delay differeatial operator

Define the delay differential operator 8 : Dom S —
R, by

(3x)) = {i(l)'Al(‘)"(‘)’ Ayt-1).t € [0y

x(t), t €[1.0]
where
i) Dom3= { x€X, | xp, ¢, € ACO. 1y}, kg, 1,3 € [0, t,]}
ii) Ay(t) and Aj(t) are n x n real matrix valuved
functions whose columas are in Ry.

We see that 3 is a linear operator.

Theorem 2.1 Let be defined as in the above. Then the
adjoint operator 3" poa S R, is
[ yO)- Ag (b + TVy(t+ 1), te[-1,0)
(S'y)(t)- [ oy(0)- A Oy - A e+ Dyl + 1), L E[08-1)
[ -yl - Ap (t)y(e), tefy -1y
where Dom & =
{ y €8y | (1) = ¥(0)= 0.y, 1 € ACIO. 1] 7, y1 €13{0. ‘1]}'
Now let's define the formal adjoint operator, which
will be useful to the characterization of optimal control,
8" DomS — Ry by
[ yO)- Ay e+ (e 1), te[-1.0)
(S‘ylt):l - AT Op(0) - Ay (t+ Dylt+ T). ¢ g[0y-1)
L -y(t)- A (Oy(e), tefy -1y
where
Dom = yexy |yp, 11 € Ad0. 1), 3, 1 €13[0, u]}.
Note that 8" ¢ '

3. Marrix solution of Delay differential operatot equation

Define a n % n matrix valved functions X(t.5) and

Y(s.t)on R % R as follows: for each s € R fixed.

i) X(te) =1,
X(ts) =0, t>s
%X(t,s) = Al‘(t)X(t.s) + Az*(r.)Y(t— Ts), tzs
i) Y(tt) = I,
Y(s.t) = 0, s >t

a x *
£Y(S.t) = AP (SIY(s.t) + Ay (s+T)Y(s+ Tt), 5 s t
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Then we have the following theorem.

Theorem 3.1
X(ts) = Y (st). foralic,s € K.
The following theorem characterize the fundamental

matrix solution X(t,s) of (1-2) in terms of the fundamental

matrix solution ®(t) of k(t)= Aj(t)x(t).

Theorem 3.2. Let ®(t) be the n x n fundamental matrix

solution of x(t)= Ay(t)x(t). Then
!

X(t.s) =®(l)2Hi(t,s)¢"l(s), tss
i=0

where

i) £ € N such that t € [s+£1,5+(2+1)1]
ii) Hoft.s)= 1

iif) forj=12,+4¢

Hj(t,s)

tg
I hoHj (@.s)doe s+ T <tss+(j+1)T
s+

0, ortherwise

here
h(@) = & '@)Ay e+ D(@+1).
Proof. We construct X(t,5) using “step by step” method.
Since fort < s+7,
X(t-1,5) =0,

for s<t<s+T7T, i)becomes

é—;’;xa.s) = Ay(t)X(ts)

X(s.s)=1.
Now X(ts) is the matrix solution of x(t) = Ay(t)x(t).
Thus  X(ts) = @1)C(s).
But X(s.5) = I. Therefore C(s) = (D"l(s).
That is,

X(ts) = Q(L)Q‘l(,s), for sst<s+1.
For s+t <t 55+271,

iX(t.s) = AJOX(S) + AyUX(t-T5)

with X(s+1.5) = @(sn)@'l(s)‘
Therefore
X(ts) = <D(t)€l>'l(s +T)X(s+1.s) +

]‘«»(:) o Moy ()X (- 1) o
s+
= 0P Us+ 1)Bs + 1) D7 L(s)
+ r-t@(t) cb'l(o: + DA (@ + T)P(x) @'l(s) doe
s

R P
[ o o+ DA @ + 11(0) dor [0 (s)

5

=®(l)€]+



Let

o
Hy(t,s) = L O+ T)A (o + T)O() dax .

Then
X(t.s) = ()1 +H1(L.s))®'l(s).
Now we show " by induction” that for s+£T <t < s+(£+1)T,

1-]
X(ts) = O(t) EHi(t,s)Q_l(s).

1=0
where
i) Holt.s)= L
t-T
11) H-,(t,s) = J h(Q)Hi_l(Q,S) da, i=12--¢
s+(i-1)t

here h(Q) = oM+ T)Ay(a+ 1)d(a).
Suppose that for s+({-1)1 st < s+47T,

1-1
X(ts) = (1) ZHi(t,s)qf‘(s),
1=0
Then for s+41 st < s+(£+1)T,
X(ts) = D) (s + 21)X(s + 21,5)

+ r®(t)®"l(a)A2(a)X(a-t,s) dox
s+t
3|
= ‘D(}t)@'l(s +20)0(s + h)zH s+ h,s)@‘l(s)

i=0
1 I -l
+@(t)J @"(an)Az((xw)@(a)ZHi(a,s)Q'l(s)doz
s+(2-1)t ot
r
= @(lﬂl I+

[

{ s+{Z-1x¢ tx
| ] n(a)am[ h(oz)da]
s s+{(Z-1)e

+

Iu(l—l)t

t-t \
h(oHy(aska + J ) 1)tn(oz)ul(oz.s)uoz]
s+(L- ;

S+1T

{s+(f1n , te )
+ l I h(,u)Hl,z(a,s)da+J h{a)H, (o, s ot |
g2 s+(2-Dt !

t1 0 1
+ J h(@)H, gta,s) do [0 (s)
s+(£-1)t ]

Thus we have

!
X(ts) = &) ZH,-(I,S)Q_I(S)'
1=0

In the following theorem we state the solution of

delay differential operator equation.

Theorem 3.3 Letf € L'{»[—I,q]. Then
(Sx)v) = @), foraat €[-T.y]
if and only tf
i) x(t) = f(1). fora.a.t [-1.0)

0
i) x(t) = X(t.0)xq + I X(ts+T)Ay(s + T)x(s) ds
<

+ LZX(z,s)f(s)ds. tefoy]
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where xg € K" is a constant.

Now we state the corollary which will be useful to
characterize the optimal control,

Corollary 3.4 Letf € L}[0.t; + 1]. Then
(Syk0) = 1)t € [-1y]
if and only if
A (e y(ten) + 1) ¢ € [1,0)
{
wt) = | 4
Y(up L Yisa)f(s)ds. t & [0.y]

where p £ R" is given.

4. Optimal control over L) [4,[1]

Fori=121et F; : % ® R, — K ve defined by
4
R = [ (6 00 1700
-t
where f;). fi5 aren » d. m x d real valued martrices
whose columnes are in Ry . Ry, respectively. Let

Jux)= J:([Luf: +[Wx'2)dt + ,Fl(u,x)fz,

foru € Ry, x € DomS, where | - | is the Euclidean norm.
Let y £ ®? be given and U be a convex subset of
Ry . we consider the following problem :
Minimize J over all {uv x} such that
vel x € Dom8
ii) {Sx)t) = Beu(). t € [-1.4]
i) Fyux) =y,
Here B(t) is a n x m real valued matrix whose
columns are in Ry
Let D = {{ux}|u xsaisfyi)ii)andiii)}. An element

{vx] € D is called a succesful control response pair

Throughout this paper, we assume that D is non empty.

When lu‘,x‘} minimize J over D. it is called an optimal-

response pair.

The above cost functional is different from the usual
one in that U®) and W(1) are defined on [-T.n]
Futhermore we minimize J over v € U C Ry by
considering the initial function as a part of the control
function. In here, we are using the general boundary

condition. we can change this boundary condition into two

point boundary condition by choosing f; and fj;
properly.
Remark - Since the initial fonction B(t)u(t) is not

continuous but squre integrable in [-7,0), there 1s no

unique solution vnless we specify the value of x(t) at t=0.



Fort € [-1.y]
(K(ts+T)Ax(s+ 1), s € [-1.0)
Kifes) = | X(ts), s €]0.y)
and define Ty, Ty : Ry — ®p by

t
(T = J ]Xﬂ't,s}B(s)u(s) ds
r)

and
{Tyu)) = By(yu(®)
0. tef0y]
B = }' .
where By(t) ; B, ¢ € [10)

Set T = Ty + Ty. Then the state function x{t} is
expressed by

x(®) = X(t.0)xp + (Tu)v), t € [-1y]
Fori=1.2, let

U o
Q = L fi (0X(.0)de,
m;(t) =

H j:' tf“*(s)X(s,: + T)dsAg(t+ D+ 157 (1) (B + 1 (o)t €]-1.0)

]

t
% J LSO ds Bty + " (x),
L

and define Mju : R, — %° by
!
My = Imi(t)u(t) dr.
s

t€[0.1]

Then, fori=1,2, .
Fi{ux) = Qix{0") + Mju.
Thus
Fz(u,x) =y iff sz(o*) =¥ - Npu .

Let's consider Q; as an operator from %" to %®® and

assume that

U, = {ueU|y- My € RaggeQy).
be non-empty so that D is not empty. Now pick an
arbitrary, but fixed algebraic operator part of Qy, say it
02’“. Then U, is a convex subset of Ry and
x(0%) = Q*(y - Mau)+q. forsome q € M/Qy
Thus

Fi(vx) = QQ2*( v - Mgu)+g) + Mp.

Hence we have the following theorem.

Theorem 4.1 {u, x} £ D if and only if
iyu £ U,
i) x = X(- 0 Q*( ¥ - Myu)+q) + Tu,
forsome q € M/ Q.

Let H = Ry = Ry % R®¢ with the inner product

(o xi.p1} o2 x2. 22y =
b,
I (o1 @) + 1o )& p'p
<

and its norm

211

[fu. x, p}“z = ﬁ(!u(t)lz + lx(tjz)dt + |p12.
Then
Xu.x) = | {Us, Wx, Fyfs, 0}

- | {Us, W(T- X(,00Q: M )u. (M;-Q1Q;* My Ju |

- [0.WX(:08. Q) + [ 0. WXG0Wy'r. 0iQ7"r]f
Ji{u.q), forsome ¢ € MZQ,.

Theorem 4.2 {u+, x+} is an optimal pair if and only if
+
x

i) {u‘. } eD

i) {u*, q"} minimize J(v, q) over U, > AMw/Q;

where

x" = X(.0{Q*( ¥+ Mp'J+q| + T

Proof We know that [u*, x*} is an optimal pair if and
only if {u*. x‘} & D and J(u*.x‘) < J(u. x) for all {u, x}
€ D. Assume that there exists §° € AMu/Qy such that

x' = X(-.OXQ;‘(‘ Y- Mzu*)ﬂf) + To .
Then J(u+,x*) s J(u‘,q") and J(u*.q*) < Ju, q) for all
{v,q} € U, x Mu/Qy. This proves the theorems

Theorem 4.3 Assume that U is closed and U is invertible.
Then

Ky = {{Us W(T-X(:0)0, Ma)u (M - 10y "My Jo} | u U, |

is closed convex subset of H.

Proof. Let's define A: Ry, — Ry by (Au)t) = Utuqt). ¢ &
[-Ty] Then A is a bound operator . Note that
M3 = W(T-X(:00Q;'M;) and My =M;-QQ"My are
bounded operators. Thus K is a convex subset of H. Let
{4. 4. q) be sequence in Ky converge to {2 & 4. We
want to show {4 & 4 € K;. Since U is invertible. A is one
to one and Rsgge A is closed. Therefore there exists a
sequence f{u,} € U, converging to {u ]E U, such that
U, ()= 4 and U(u() = & Thus g converge to & Let
{4. 4 @l ={Uu. Myu, Mgu,}. Then (4. 4. 4f
converge to {4 & g ={Uu. Msu, Mgu} as u; converge to
u. Thus K is closeds

Remark. If we let
K; ={{ 0. WX(.0)x, Qug} |q € M Q)
then K; is a closed convex subset of H.

For the sake of convenience let
P(o, q)= {Uu, W{T-X(:000:"My)u. (M; - Q1Q; Mo |
+ {0, WX(.0)q. Qiq}



and
B = {0 WX(.000,". 00"y}
Thean
K=K &K= {P(u,p)]uEUa. MI/QZ]

is & closed convex subset of H.

Theorem 4.4 (Existence)

Assume that U is closed and U is invertible, Then
there exists a unique {u*. x*} € D and J(u* . x*) s Ju, x),
forall {u, x} € D.
Proof. Since K is a closed convex subset of H and € H,
by the projection theorem for the closed convex subset of
Hilbert space, there exist a unique P(u'., P )E K such that

[o(s .5} + B[ < IPw.p) + B/ Pwp) € K.
Tha is.

Jl(yu*,pf) s Jlu p) fu q} € Uy » MQ;.
Now note that Jl(.u*,p*) = J(u‘. x") and  Jy(u.p) =

J(u. x). Thus there exists a unique {u*, x*} € D such that

J(u*,f) < J(u,x), {u. x} € D+

Theorem 4.5 (Neccessary and sufficient condition)
Assume that U is closed and U is invertible. Let
{u‘. x’} € D. Then {u’, x'} is an optimal pair if and only
if there exists | = Dom S and 8 € Dom T (i=1.2)
columnwise such that
1) (S’n)(n =W OWrQ). te [-1.4]
) =0
ifory=12 .4
(38 =y 1), vel-1y]
dlty) =0
i (U - BT+ (B‘Sl + fu)Fl(_.u*. x+.) -
(8% + 12} o) (XCOW'Wx* + Q7 JFyfu” x']
' —u;}‘r < 0. forallu €U,
and
X' OW Wy + QFy (v x*) & (MQy)t.

Proof. By theorem 1.4 there exists l’(u‘, p*)e K such that

|P(“*vp*) + ﬁ"z s |Pu.p) + B Plu.p) € K.
Futhermore.
<P(u*, p+) + B,P(u+, p+) P(up),\ s 0, Plu.p) € K.
That is,
’(\{(Uu‘.Wx+ ,Fl(u* x* ))l ,
{U(u" - u),WX(-,OXq* —q)+}l3(u" —u),Ql(q* -q)+M4(u* - u)’/}

<0, forall {u, q} € Uy » MlQy
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where My = W(T-X(:0)Q,"M;) and My = Nj-Q1Q;*M;.
That implies

YTt + + + / + + Y
Uu .U(u —u)>+<Wx ,WX(-,O)(q -q)>+<\Wx .M3(u —u)/

+ <Fl(u* . x*),Ql(q* -q):,‘+<F1(u‘, x*).M4(u* —u)> < 0,
forall v € U, and q € M/Qy.

Therefore,

(15) {U'Uu* MW + MR (0" 1 )" u) +
(X"COW W+ QFy(v . x' )" -q) 5 0,
forall u € U, and q € MZ/Q,.

Since MurQy is & closed subspace of R” . we have

(1-6) {UtUu)' + MW+ M;Fl('u*, x"),u" -u> .
{X*(;O)W'*Wx" + Q;Fl(u* , x‘),q" -q> <0,
forall v € U, and q € M/Qy.

By (1-5) and (1-6),

(U'Uu® + M5 W < MRy (o 1 )" —u) 5 0w € 1,
and
X COW W+ Ry’ x')q"-q) =0, q € MuQy.

That implies

X oW W + QFyv' . x*} & (MwrQy)t

Note that
( (R
i B‘(t,)l ‘X (s.t) ¥(s)ds, tE[O,q]
3* ¥ =»{ ) ! .
1 ‘ . t \
%B‘(t)t F(t)+ Ay (t+ I)I lX‘(s.t +1) #(5)ds ( t€[-1.0]
| t+4 /
and
!/ * L |
|80 Xt s+ 1200 w0, tefoy]
il t I
* ‘, L * Uoe ‘
M, #= 1|B (z)i{fﬂ(mAz (t+I)L 3{ (s.t+ I)fi](s)ds] w (1)
? + fip(ty w(t), te[-1,0]
i
Now let
ey =
[t .
J' f X (sOWE )W) (5) ds, tefoy]
t

i * t *
’Wth"(t)+ Ay (t+T)J lX'(s.t+I)W Wx*(s)ds. t €[-1.0)
- t+ €

Then W) = 0 and n(t) is the solution of
(S‘n)(t) = W‘(t)W(t)x*(t) e [ty

Similary, fori =12 let
et
II }X*(S.t)fil(s)ds,
Biw = | .
i)+ Art(t+ r')I Xt +T)fjp(s)ds, ¢ €f-1,0]
L t+ 1

tefoy)



Then, forj = 1.2, .4, 8;(t)) = 0 and 8;(t) is the solution
of

(S*éu)(t) = fil,(t)' t € [-T.tll.
Therefore

(’l‘*W'Wx+ )(t) = B, t e B3

and

(Mi' w)t) = B'(e)i(0) + f120).  te[0y]
Thus

U + MW+ MRy x)

= U + B+ (BB () + T @)Fy(v* )

- (8%, +tn Q" )' (x‘(.,o)w‘Wx‘ + QUFy(v" x))
This proves "oaly if part". The "if part’ can be traced backe

Corollary 4.6 Assume that U
that

L3[-1y] aad U is
MUQy = {0). Let
lu*,x*} £ D. Then {u*,x*} is an optimal pair if and only

invertible. Assume further

if there exists | € Dom S and 8, € Dom S (i=12)

columnwise such that
D (3'0)© = W W' ©. te[-ty]
ny) =0
iyforj=12. .4
(S*Gij)(t) =fj (0. te [-1y]
Bilty) = 0
iii)
U'nv* + B‘nl +(B‘81 +1}3 )Fl(u’ X )
(B, +12 J Q2 )'(X(- OW W + Q" JFy(u' x*)=0.
forall t € [-T.4]
Proof. Since M#/Qy = {0} aad U = L3[-ty] the

admissible control space is trhe whole space. Therefore the

inequality iii) of the above Theorem 2.5 becomes equality*

Let d=n and fzf(t) =lp.t € [—I,t,]. and choose

l r' X(s.t+1)dsA{t + 1) + B(t). t€[-1. 0)
fzzt([) _ Jl :vt )
‘ ' X(s,)dsBt), tef0. y)
Lt

: 1

4
Then Fy(u.x) = Y becomes xg = ”0 Y(\O.s)ds} y. That is
\

the general boundary condition becomes the initial
coadition. In the following we discuss the optimal control
of the initial boundary condition.

Theorem 4.7 Let xop €R" be given and U is a convex
subset of L3[-14] Cosider the problem of finding the
optimal control u* minimizing
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Jolu, %)= [:(IUU|2 +wf ) o

subject to
ijjueU x € Dom§
i) (3x)(t) = B, t € {-1.y]
i) x(0) = xg .

Assume that U is invertibie. Let l“+.x*} € D. Then

{u‘.x‘} is an optimal pair if and only if there exists | €
Dom T such that

D (3 )© = WoOWex' @, te[-ty]

ny) =0 .

ii) {U"Uv* +B'n,u" -u)= 0 foraliu € U.
Proof. Referring to theorem 4.5, we see that Fi(ux) =0,
Q; is a nonsingular matrix and Xg = Qz’y. Fori =172,
Btéi +f;5 =0. Thus we have the above theorem*

Corollary 4.8 Consider the problem of theorem 4.7.
U = L3-ty] Let
[u*.x‘} € D. Then {u’.x"} is an optimal pair if and oaly

Assume that U is invertible and

if there exists | € Dom S° such that
i) "S*n)(t) =W OWeR'(1), tE [—t,q]

o) =0
i) ut{t) = A(U‘U)_l(t)B‘(t)T](t).t €[t}
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