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A FIXED POINT APPROACH TO THE ORTHOGONAL

STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS

Young Ju Jeon and Chang Il Kim∗

Abstract. In this paper, we investigate the following orthogonally additive-

quadratic functional equation

f(2x+ y)− f(x+ 2y)− f(x+ y)− f(y − x)− f(x) + f(y) + f(2y) = 0.

and prove the generalized Hyers-Ulam stability for it in orthogonality

spaces by using the fixed point method.

1. Introduction

Assume that X is a real inner product space and f : X −→ R is a solution
of the orthogonally Cauchy functional equation f(x+ y) = f(x) + f(y),
< x, y >= 0. By the Pythagorean theorem, f(x) = ‖x‖2 is a solution of the
conditional equation. Of course, this function does not satisfy the additivity
equation everywhere. Thus, orthogonal Cauchy equation is not equivalent to
the classic Cauchy equation on the whole inner product space.

The orthogonally Cauchy functional equation

f(x+ y) = f(x) + f(y), x⊥y

in which ⊥ is an abstract orthogonality relation, was first investigated by Gud-
der and Strawther [6]. Rätz [15] introduced a new definition of orthogonality
by using more restrictive axioms than of Gudder and Strawther. Moreover, he
investigated the structure of orthogonally additive mappings. Rätz and Szabó
[16] investigated the problem in a rather more general framework.

Definition 1. [16] Let X be a real vector space with dimX ≥ 2 and ⊥ a binary
relation on X with the following properties:

(O1) totality of ⊥ for zero: x⊥0 and 0⊥x for all x ∈ X;
(O2) independence: if x, y ∈ X−{0}, x⊥y, then x, y are linearly independent;
(O3) homogeneity: if x, y ∈ X, x⊥y, then αx⊥βy for all α, β ∈ R;
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(O4) the Thalesian property: if P is a 2-dimensional subspace of X, x ∈ P
and a non-negative real number k, then there exists an y ∈ P such that x⊥y
and x+ y⊥kx− y.
The pair (X,⊥) is called an orthogonality space. By an orthogonality normed
space, we mean an orthogonality space having a normed structure.

Remark 1. (i) The trivial orthogonality on a vector space X defined by (O1) and
for non-zero elements x, y ∈ X, x⊥y if and only if x, y are linearly independent.

(ii) The ordinary orthogonality on an inner product space (X,< ·, · >) given
by x⊥y if and only if < x, y >= 0.

(iii) The Birkhoff-James orthogonality on a normed space (X, ‖ · ‖) defined
by x⊥y if and only if ‖x+ ky‖ ≥ ‖x‖ for all k ∈ R.

The relation ⊥ is called symmetric if x⊥y implies that y⊥x for all x, y ∈ X.
Then clearly examples (i) and (ii) are symmetric but example (iii) is not. It
is remarkable to note, however, that a real normed space of dimension greater
than 2 is an inner product space if and only if the Birkhoff-James orthogonality
is symmetric.

In 1940, S. M. Ulam proposed the following stability problem (cf. [18]):

“Let G1 be a group and G2 a metric group with the metric d. Given a
constant δ > 0, does there exist a constant c > 0 such that if a mapping
f : G1 −→ G2 satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there
exists a unique homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all
x ∈ G1?”

In the next year, Hyers [7] gave a partial solution of Ulam,s problem for the
case of approximate additive mappings. In 1978, Rassias [14] extended the
theorem of Hyers by considering the unbounded Cauchy difference. The result
of Rassias has provided a lot of influence in the development of what we now
call the generalized Hyers-Ulam stability or Hyers-Ulam stability of functional
equations. Ger and Sikorska [5] investigated the orthogonal stability of the
Cauchy functional equation

f(x+ y) = f(x) + f(y), x⊥y (1)

and Vajzović [19] investigated the orthogonally additive-quadratic equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y), x⊥y (2)

when X is a Hilbert space, Y is a scalar field, f is continuous and ⊥ means the
Hilbert space orthogonality. Later, many mathematicians have investigated the
orthogonal stability of functional equations ([3], [4], [10], [11], [17], [9], [12], and
[13]).

In this paper, we deal with the following functional equation

f(2x+y)−f(x+2y)−f(x+y)−f(y−x)−f(x)+f(y)+f(2y) = 0, x⊥y. (3)

It is easy to see that the function f(x) = ax2 + bx is a solution of (3).
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1.1. Orthogonal stability for (3)

Let (X,⊥) be an orthogonality normed space with the norm ‖ · ‖X and
(Y, ‖ · ‖) be a Banach space. For any mapping f : X −→ Y , we define the
difference operator Df : X2 −→ Y by

Df(x, y) = f(2x+ y)− f(x+ 2y)− f(x+ y)− f(y − x)− f(x) + f(y) + f(2y)

for all x, y ∈ X and let

fo(x) =
f(x)− f(−x)

2
, fe(x) =

f(x) + f(−x)

2
.

In this section, we prove the generalized Hyers-Ulam stability for the orthogonal
additive-quadratic functional equation (3) by using the fixed point method.

Lemma 1.1. Suppose that f : X −→ Y is a solution of the functional equation
(3). Then f is an orthogonally additive-quadratic mapping.

Proof. Clearly, f(0) = 0. Letting y = 0 in (3), we have

f(2x) = 3f(x) + f(−x) (4)

for all x ∈ X. By (3) and (4), we have

fo(2x+ y)− fo(x+ 2y)− fo(x+ y) + fo(x− y)− fo(x) + 3fo(y) = 0 (5)

for all x, y ∈ X with x⊥y. Since ⊥ is symmetric, interchanging x and y in (5),
we have

fo(x+ 2y)− fo(2x+ y)− fo(x+ y)− fo(x− y)− fo(y) + 3fo(x) = 0 (6)

for all x, y ∈ X with x⊥y. By (5) and (6), f is an orthogonally additive
mapping.

By (3) and (4), we have

fe(2x+ y)− fe(x+ 2y)− fe(x+ y)− fe(x− y)− fe(x) + 5fe(y) = 0 (7)

for all x, y ∈ X with x⊥y. Since ⊥ is symmetric, interchanging x and y in (7),
we have

fe(x+ 2y)− fe(2x+ y)− fe(x+ y)− fe(x− y)− fe(y) + 5fe(x) = 0 (8)

for all x, y ∈ X with x⊥y. By (7) and (8), fe is an orthogonally quadratic
mapping. Hence f = fo+fe is an orthogonally additive-quadratic mapping. �

In 1996, Isac and Rassias [8] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with
applications.

Theorem 1.2. [1], [2] Let (X, d) be a complete generalized metric space and let
J : X −→ X be a strictly contractive mapping with some Lipschitz constant L
with 0 < L < 1. Then for each given element x ∈ X, either d(Jnx, Jn+1x) =∞
for all nonnegative integer n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0 ;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
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(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞}
and

(4) d(y, y∗) ≤ 1

1− L
d(y, Jy) for all y ∈ Y .

Theorem 1.3. Assume that φ : X2 −→ [0,∞) is a function such that

φ(x, y) ≤ L

4
φ(2x, 2y) (9)

for all x, y ∈ X with x⊥y and some L with 0 < L < 1. Let f : X −→ Y be a
mapping such that f(0) = 0 and

‖Df(x, y)‖ ≤ φ(x, y) (10)

for all x, y ∈ X with x⊥y. Then there exists a unique orthogonally additive-
quadratic mapping F : X −→ Y such that

‖f(x)− F (x)‖ ≤ (4− 3L)L

4(1− L)(2− L)
ψ(x, 0)(11)

for all x ∈ X, where ψ(x, y) = 1
2 [φ(x, y) + φ(−x,−y)].

Proof. Consider the set S = {g | g : X −→ Y } and define the generalized metric
d on S by

d(g, h) = inf{c ∈ [0,∞) | ‖g(x)− h(x)‖ ≤ c ψ(x, 0),∀x ∈ X}.

Then (S, d) is a complete metric space([9]). Define a mapping To : S −→ S by
Tog(x) = 2g(x

2 ) for all x ∈ X and all g ∈ S.
Let g, h ∈ S and d(g, h) ≤ c for some c ∈ [0,∞). Then by (9), we have

‖Tog(x)− Toh(x)‖ = 2‖g(
x

2
)− h(

x

2
)‖ ≤ cL

2
ψ(x, 0)

for all x ∈ X. Hence we have d(Tog, Toh) ≤ L
2 d(g, h) for all g, h ∈ S and so To

is a strictly contractive mapping. By (10) and (O3), we get

‖Dfo(x, y)‖ ≤ ψ(x, y) (12)

for all x, y ∈ X with x⊥y. Putting y = 0 in (12), we get

‖fo(2x)− 2fo(x)‖ ≤ ψ(x, 0)

for all x ∈ X and hence

‖fo(x)− 2fo(
x

2
)‖ ≤ L

4
ψ(x, 0)

for all x ∈ X and hence d(fo, Tofo) ≤ L
4 < ∞. By Theorem 1.2, there exists a

mapping A : X −→ Y which is a fixed point of To such that d(Tn
o fo, A)→ 0 as

n→∞ and

‖A(x)− fo(x)‖ ≤ L

2(2− L)
ψ(x, 0) (13)
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for all x ∈ X. Replacing x, y by x
2n , y

2n in (12), respectively, and multiplying
(12) by 2n, by (O3), we have

‖2nDfo(
x

2n
,
y

2n
)‖ ≤ Ln

2n
ψ(x, y)

for all x, y ∈ X with x⊥y and all n ∈ N. Letting n→∞ in the last inequality,
we get

DA(x, y) = 0 (14)

for all x, y ∈ X with x⊥y.
Define a mapping Te : S −→ S by Teg(x) = 4g(x

2 ) for all x ∈ X and all
g ∈ S. Let g, h ∈ S and d(g, h) ≤ c for some c ∈ [0,∞). Then by (9), we have

‖Teg(x)− Teh(x)‖ = 4‖g(
x

2
)− h(

x

2
)‖ ≤ cLψ(x, 0)

for all x ∈ X. Hence we have d(Teg, Teh) ≤ Ld(g, h) for all g, h ∈ S and so Te
is a strictly contractive mapping. By (10) and (O3), we get

‖Dfe(x, y)‖ ≤ ψ(x, y) (15)

for all x, y ∈ X with x⊥y. Putting y = 0 in (15), we get

‖fe(2x)− 4fe(x)‖ ≤ ψ(x, 0)

for all x ∈ X and hence

‖fe(x)− 4fe(
x

2
)‖ ≤ L

4
ψ(x, 0)

for all x ∈ X and hence d(fe, Tefe) ≤ L
4 < ∞. By Theorem 1.2, there exists a

mapping Q : X −→ Y which is a fixed point of Te such that d(Tn
e fe, Q)→ 0 as

n→∞ and

‖Q(x)− fe(x)‖ ≤ L

4(1− L)
ψ(x, 0) (16)

for all x ∈ X. Replacing x, y by x
2n , y

2n in (15), respectively, and multiplying
(15) by 2n, by (O3), we have

‖4nDfe(
x

2n
,
y

2n
)‖ ≤ Lnψ(x, y)

for all x, y ∈ X with x⊥y and all n ∈ N. Letting n→∞ in the last inequality,
we get

DQ(x, y) = 0 (17)

for all x, y ∈ X with x⊥y.
Let F = A+Q. Then we can easily show that A is odd and Q is even. Hence

by (14) and (17), F is a solution of (3). By Lemma 1.1, F is an orthogonally
additive-quadratic mapping. Since ‖F − f‖ ≤ ‖A − fo‖ + ‖Q − fe‖ and hence
we have (11).

Now, we will show the uniqueness of F . Let G : X −→ Y be another
orthogonally additive-quadratic mapping with (11). By (11), we get

‖Go(x)−Fo(x))‖ ≤ 1

2
‖G(x)−F (x)‖+1

2
‖G(−x)−F (−x)‖ ≤ (4− 3L)L

4(1− L)(2− L)
ψ(x, 0)
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for all x ∈ V . Since Fo and Go are fixed points of To, we have

‖Go(x)− Fo(x)‖ ≤ ‖Tn
o Go(x)− Tn

o Fo(x))‖ ≤ 4− 3L

4(1− L)(2− L)
Ln+1ψ(x, 0)

for all x ∈ V and for all n ∈ N. Hence Fo = Go and similarly, we have Fe = Ge.
Thus F = G. �

Related with Theorem 1.3, we can also have the following theorem. And the
proof is similar to that of Theorem 1.3.

Theorem 1.4. Assume that φ : X2 −→ [0,∞) is a function such that

φ(2x, 2y) ≤ 2Lφ(x, y) (18)

for all x, y ∈ X with x⊥y and some L with 0 < L < 1. Let f : X −→ Y be a
mapping satisfying f(0) = 0 and (10). Then there exists a unique orthogonally
additive-quadratic mapping F : X −→ Y such that

‖f(x)− F (x)‖ ≤ 4− 3L

4(1− L)(2− L)
ψ(x, 0)(19)

for all x ∈ X, where ψ(x, y) = 1
2 [φ(x, y) + φ(−x,−y)].

Proof. Consider the set S = {g | g : X −→ Y } and define the generalized metric
d on S by

d(g, h) = inf{c ∈ [0,∞) | ‖g(x)− h(x)‖ ≤ c ψ(x, 0),∀x ∈ X}.

Then (S, d) is a complete metric space([9]). Define a mapping To : S −→ S by
Tog(x) = 1

2g(2x) for all x ∈ X and all g ∈ S.
Let g, h ∈ S and d(g, h) ≤ c for some c ∈ [0,∞). Then by (18), we have

‖Tog(x)− Toh(x)‖ =
1

2
‖g(2x)− h(2x)‖ ≤ cLψ(x, 0)

for all x ∈ X. Hence we have d(Tog, Toh) ≤ Ld(g, h) for all g, h ∈ S and so To
is a strictly contractive mapping. By (10) and (O3), we get

‖Dfo(x, y)‖ ≤ ψ(x, y) (20)

for all x, y ∈ X with x⊥y. Putting y = 0 in (20), we get

‖fo(2x)− 2fo(x)‖ ≤ ψ(x, 0)

for all x ∈ X and hence

‖fo(x)− 1

2
fo(2x)‖ ≤ 1

2
ψ(x, 0)

for all x ∈ X and hence d(fo, Tofo) ≤ 1
2 < ∞. By Theorem 1.2, there exists a

mapping A : X −→ Y which is a fixed point of To such that d(Tn
o fo, A)→ 0 as

n→∞ and

‖A(x)− fo(x)‖ ≤ 1

2(1− L)
ψ(x, 0) (21)
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for all x ∈ X. Replacing x, y by 2nx, 2ny in (20), respectively, and multiplying
(12) by 1

2n , by (O3), we have

‖ 1

2n
Dfo(2nx, 2ny)‖ ≤ Lnψ(x, y)

for all x, y ∈ X with x⊥y and all n ∈ N. Letting n→∞ in the last inequality,
we get

DA(x, y) = 0 (22)

for all x, y ∈ X with x⊥y.
Define a mapping Te : S −→ S by Teg(x) = 1

4g(2x) for all x ∈ X and all
g ∈ S. Let g, h ∈ S and d(g, h) ≤ c for some c ∈ [0,∞). Then by (9), we have

‖Teg(x)− Teh(x)‖ =
1

4
‖g(2x)− h(2x)‖ ≤ cL

2
ψ(x, 0)

for all x ∈ X. Hence we have d(Teg, Teh) ≤ L
2 d(g, h) for all g, h ∈ S and so Te

is a strictly contractive mapping. By (10) and (O3), we get

‖Dfe(x, y)‖ ≤ ψ(x, y) (23)

for all x, y ∈ X with x⊥y. Putting y = 0 in (23), we get

‖fe(2x)− 4fe(x)‖ ≤ ψ(x, 0)

for all x ∈ X and hence

‖fe(x)− 1

4
fe(2x)‖ ≤ 1

4
ψ(x, 0)

for all x ∈ X and hence d(fe, Tefe) ≤ 1
4 < ∞. By Theorem 1.2, there exists a

mapping Q : X −→ Y which is a fixed point of Te such that d(Tn
e fe, Q)→ 0 as

n→∞ and

‖Q(x)− fe(x)‖ ≤ 1

2(2− L)
ψ(x, 0) (24)

for all x ∈ X. The rest of the proof is similar to the proof of Theorem 1.3. �

As an example of φ(x, y) in Theorem 1.3 and Theorem 1.4, we can take

φ(x, y) = ε(‖x‖pX‖x‖
p
X + ‖x‖2pX + ‖y‖2pX ) for some positive real numbers ε and p.

Then we can formulate the following corollary :

Corollary 1.5. Let (X,⊥) be an orthogonality normed space with the norm
‖ · ‖X and (Y, ‖ · ‖) a Banach space. Let f : X −→ Y be a mapping such that

‖Df(x, y)‖ ≤ ε(‖x‖pX‖x‖
p
X + ‖x‖2pX + ‖y‖2pX ). (25)

for all x, y ∈ X with x⊥y and a fixed positive number p with 0 < p < 1
2 or

1 < p. Then there exists a unique orthogonally additive-quadratic mapping
F : X −→ Y such that

‖F (x)− f(x)‖ ≤


22p+2−12

(22p−4)(22p+1−4)ε‖x‖
2p
X , if 1 < p

8−3·22p
2(2−22p)(4−22p)ε‖x‖

2p
X , if 0 < p < 1

2 ,
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for all x ∈ X.
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