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A QUADRATICALLY CONVERGENT ITERATIVE METHOD

FOR NONLINEAR EQUATIONS

Beong In Yun and Miodrag S. Petković

Abstract. In this paper we propose a simple iterative method for finding
a root of a nonlinear equation. It is shown that the new method, which
does not require any derivatives, has a quadratic convergence order. In

addition, one can find that a hybrid method combined with the non-
iterative method can further improve the convergence rate. To show the
efficiency of the presented method we give some numerical examples.

1. Introduction

Until recently lots of iterative methods for solving a nonlinear equation
f(x) = 0 have been proposed [1, 3, 4, 5, 6, 7, 9, 12, 14]. Most of these meth-
ods are based on the Newton method or the secant method, and an extensive
analysis of numerical results and some valuable remarks are included in [9]. It
should be noted that the availability of most iterative methods based on the
Newton method depends on an initial guess and behavior of the function f(x)
near the root. Moreover, an explicit form of the derivative f ′(x) is necessary in
implementing the Newton method. Though the secant method can overcome
this problem, it takes a cost of slower rate of convergence.

To get over the difficulties such as the choice of initial guess and improper
behavior of f(x) in using the existing iterative methods, one of the authors
recently proposed a non-iterative method in the work [13]. The method is
based on a transform of f(x) via a hyperbolic tangent function or a signum
function. Then numerical evaluation of the integration of the transformed
function should be performed to find an approximate root, directly. The error of
this method depends only on the accuracy of the numerical integration. In order
to obtain sufficiently accurate numerical integration, however, a large number of
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integration points are needed because the integrand or the transformed function
is a step-like function.

The purpose of this work is to develop a new simple iterative method to
remedy the aforementioned drawbacks of the Newton method and the secant
method. As a result, the proposed method maintains quadratic convergence
without requiring a derivative of the function f(x) nor the effort to choose
a proper initial guess. Furthermore, to accelerate convergence rate, one may
replace an initial interval using the non-iterative method proposed in [13].

2. A new iterative method

Under the assumption that a continuous function f(x) has a unique zero on
an interval [a, b] with f(a)f(b) < 0, let xk ∈ (a, b) be an approximation to a
root p of an equation f(x) = 0. Set ak = xk − hk and bk = xk + hk so that p
is included in the subinterval [ak, bk] (or [bk, ak]) of [a, b] for some hk ̸= 0.

Denote by L(p;x) and L(xk;x) two piecewise linear functions as

(2.1) L(p;x) :=


f(ak)

ak − p
(x− p) , x ≤ p

f(bk)

bk − p
(x− p) , x > p

and

(2.2) L(xk;x) :=


f(ak)− f(xk)

ak − xk
(x− xk) + f(xk) , x ≤ xk

f(bk)− f(xk)

bk − xk
(x− xk) + f(xk) , x > xk .

Actually, L(p;x) and L(xk;x) interpolate f(x) at the points x = ak, p, bk and
x = ak, xk, bk, respectively (see Figure 1). We define two integrals,

(2.3)
Ik(p) :=

∫ bk

ak

L(p;x) dx =
1

2
{(p− ak)f(ak) + (bk − p)f(bk)}

=
1

2
{(p− xk) [f(ak)− f(bk)] + hk [f(ak) + f(bk)]}

and

(2.4) Jk :=

∫ bk

ak

L(xk;x) dx =
hk

2
{2f(xk) + [f(ak) + f(bk)]} .

The integrals Ik(p) and Jk become closer as the radius |hk| of the interval
[ak, bk] (or [bk, ak]) is decreasing. Thus, replacing p by xk+1 in (2.3) and solving
the equation Ik(xk+1) = Jk, we have an iteration formula as follows: For an
initial guess x0 = (a+ b)/2,

(2.5) xk+1 = xk −
[

2hk

f(bk)− f(ak)

]
f(xk) , k = 0, 1, 2, . . . ,
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Figure 1. Graphs of the lines L(p;x) and L(xk;x) over an
interval (ak, bk) centered on an approximation xk to a zero p
of f(x), where ak = xk − hk and bk = xk + hk.

where

ak = xk − hk , bk = xk + hk

and hk := xk − xk−1, k ≥ 1, with h0 = (b− a)/2 (Note that a0 = a, b0 = b).
The method (2.5) seems to be a variant of the secant method which re-

quires an additional function evaluation at bk = 2xk − xk−1, in each iteration,
compared with the traditional secant method

xk+1 = xk −
[

hk

f(xk)− f(ak)

]
f(xk) .

Referring to the literature [11], one can see that the presented method with the

step-length hk = xk−xk−1 will have a lower bound (1+
√
5)/2 for convergence

order. However, the method includes more accurate derivative approximation
than the secant method such as[

2hk

f(bk)− f(ak)

]−1

=
1

2

{
f(bk)− f(xk)

hk
+

f(xk)− f(ak)

hk

}
≈ f ′(xk)

which is an average of the slopes of two straight lines respectively passing
through the points (ak, f(ak)), (xk, f(xk)) and (bk, f(bk)), (xk, f(xk)) while
the secant method includes derivative approximation by a slope of a single
line passing through the points (ak, f(ak)), (xk, f(xk)). Figure 2 illustrates
the proposed method (2.5), geometrically, which shows that the iterate xk+1

is a zero of the line L1 passing through the point (xk, f(xk)) with the slope
(f(bk)− f(ak)) /2hk, that is, parallel with the line L passing through the points
(ak, f(ak)) and (bk, f(bk)).
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Figure 2. Illustration of the presented iterative method, in
(2.5), for evaluating xk+1 from xk, ak = xk − hk and bk =
xk + hk.

In the next section it is proved that, though the presented method has the
disadvantage of the additional expense in function evaluations, it has the same
convergence order with Newton’s method.

3. Convergence analysis

The following theorem implies that the convergence order of the proposed
iterative method becomes quadratic as the number of the iterations is increas-
ing.

Theorem 3.1. Let f(x) be twice continuously differentiable on an interval
[a, b] and let f ′′′(x) exist on (a, b). Suppose that f(x) has a unique zero p with
f ′(x) ̸= 0 on an interval [a, b]. Then the iterative method (2.5) is quadratically
convergent once an iterate xk for some k is sufficiently close to p.

Proof. From the equation (2.5), using the first order Newton’s divided differ-
ence notation and the equation f(p) = 0, we have

p− xk+1 = p− xk +

[
bk − ak

f(bk)− f(ak)

]
f(xk)

= p− xk +
f(xk)

f [ak, bk]

=
p− xk

f [ak, bk]

{
f [ak, bk]−

f(p)− f(xk)

p− xk

}
= − (p− xk)(p− bk)

f [ak, bk]
{f [xk, p]− f [ak, bk]} /(p− bk)
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= − (p− xk)(p− bk)

f [ak, bk]

{
f [xk, p]− f [bk, xk]

p− bk
+

f [bk, xk]− f [ak, bk]

p− bk

}
.

Introducing the second order Newton’s divided difference notation, we have
(3.1)

p− xk+1 = − (p− xk)(p− bk)

f [ak, bk]

{
f [bk, xk, p]−

f [bk, ak]− f [xk, bk]

ak − xk
· ak − xk

p− bk

}
= − (p− xk)(p− bk)

f [ak, bk]

{
f [bk, xk, p]− f [xk, bk, ak]

ak − xk

p− bk

}
= − (p− xk)(p− bk)

2f ′(ξk)

{
f ′′(ηk,1)− f ′′(ηk,2)

ak − xk

p− bk

}
for some ξk, ηk,1 and ηk,2 on a neighborhood of p containing the interval [ak, bk].
In the last equality the following relations were applied.

f [α, β] = f ′(ξ) , f [α, β, γ] =
1

2
f ′′(η)

for some ξ between α and β, and η between the minimum and maximum of α,
β, γ.

On the other hand, by the mean value theorem for f ′′,

f ′′(ηk,2) = f ′′(ηk,1) + (ηk,2 − ηk,1)f
′′′(wk)

for some wk between ηk,1 and ηk,2. Thus we have

f ′′(ηk,1)− f ′′(ηk,2)
ak − xk

p− bk

= f ′′(ηk,1)− [f ′′(ηk,1) + (ηk,2 − ηk,1)f
′′′(wk)]

ak − xk

p− bk

= f ′′(ηk,1)
p− xk

p− bk
− (ηk,2 − ηk,1)f

′′′(wk)
ak − xk

p− bk

so that (3.1) becomes
(3.2)

p− xk+1 = − (p− xk)
2

2f ′(ξk)
f ′′(ηk,1) −

(p− xk)

2f ′(ξk)
{(ak − xk)(ηk,2 − ηk,1)} f ′′′(wk) .

Set ek = |p− xk|. Then we can see that

(3.3) |ak − xk| = |hk| = |xk − xk−1| = |xk − p+ p− xk−1| ≤ ek + ek−1 .

In addition, assuming that hk > 0 without loss of generality, for sufficiently
close xk to the root p there is a neighborhood Uk of p,

Uk := [ak −mkhk, bk +mkhk] ,

where mk = O(1) is a positive multiplier, such that

p ∈ Uk , ηk,1, ηk,2 ∈ Uk , [ak, bk] ⊂ Uk .
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Then

(3.4)

|ηk,2 − ηk,1| ≤ (bk +mkhk) − (ak −mkhk)

= (bk − ak) + 2mkhk = 2hk + 2mkhk

≤ (2mk + 2)(ek + ek−1) .

Substituting the inequalities (3.3) and (3.4) into (3.2), we have a relation

(3.5) ek+1 ≤ c1e
2
k + c2ek

(
e2k + 2ekek−1 + e2k−1

)
for some positive constants c1 and c2. If the errors ek and ek−1 are sufficiently
small, it follows that

(3.6) ek+1 ≤ d1e
2
k + d2eke

2
k−1

for some positive constants d1 and d2. Let us assume that the convergence
order of the iteration (2.5) is r > 0, that is, for some positive constants q1 and
q2

ek+1 = q1e
r
k , ek = q2e

r
k−1 .

Then (3.6) becomes

(q1q
r
2) e

r2

k−1 ≤
(
d1q

2
2

)
e2rk−1 + (d2q2) e

r+2
k−1 ,

which implies that
r2 = min{2r, r + 2} .

Therefore we have r = 2, and thus the proof of the quadratic convergence is
completed. □

4. Numerical examples

Using a programming package, Mathematica V.6 with 500 digits of precision,
we take the following examples fi(x) = 0, i = 1, 2, . . . , 7, to show the availability
and efficiency of the proposed iterative method. In particular, we compare the
new iterative method with two traditional methods such as the secant method
and the Newton method, referring to the fact that the new method takes a
similar form to the secant method and it has the same convergence order as
the Newton method.

Example 1. f1(x) = x4 + x− 1 , 0 ≤ x ≤ 2.

Example 2. f2(x) = 1 + (x− 2)e−x , −2 ≤ x ≤ 2.

Example 3. f3(x) = 1 − (sin(πx/5)− x)2 , 0 ≤ x ≤ 5.

Example 4. f4(x) = − x3 + x− 11

3x4 − 2x2 + 5
, 1 ≤ x ≤ 5

2
.

Example 5 (Chen [3]). f5(x) = esin x − x− 1 , 1 ≤ x ≤ 4.

Example 6 (Petković [9]). f6(x) = x40 + x39 − 2 ,
1

2
≤ x ≤ 2.
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Figure 3. Comparison of the numerical errors of the pre-
sented method, the secant method, and the Newton method
for an equation f1(x) = 0.

Example 7. f7(x) = tan−1(50x)− 1

2
, −2 ≤ x ≤ 5.

Table 1. Numerical results of the presented method (2.5) for the
examples fi(x) = 0, i = 1, 2, 3.

Iterations fi(xk)
k i = 1 i = 2 i = 3
1 5.1× 10−1 −6.3× 10−1 −5.9× 10−1

2 8.2× 10−2 −9.8× 10−2 −8.7× 10−2

3 4.5× 10−3 −5.3× 10−3 −3.8× 10−3

4 1.4× 10−5 −1.7× 10−5 −7.7× 10−6

5 1.5× 10−10 −1.7× 10−10 −3.3× 10−11

6 1.7× 10−20 −1.7× 10−20 −5.9× 10−22

7 2.2× 10−40 −1.8× 10−40 −2.0× 10−43

8 3.5× 10−80 −1.9× 10−80 −2.1× 10−86

9 8.9× 10−160 −2.2× 10−160 −2.4× 10−172

10 5.8× 10−319 −2.9× 10−320 −3.2× 10−344

Table 1 includes numerical results of the first ten iterations for Example 1 –
Example 3, which implies the quadratic convergence for k ≥ 5. In addition,
for Example 1, Figure 3 illustrates that the convergence rate of the proposed
iteration is superior to both the secant method and the Newton method. In
the Newton method, throughout this section, the right end-point of the given
interval is used as an initial guess.
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For all the examples Example 1 –Example 7, numerical results of the pre-
sented method are given in Table 2 compared with the existing methods. It
includes the values of |fi(xk)|, with the related iteration number k, in the range
of c1 × 10−40 ≤ |fi(xk)| ≤ c2 × 10−21, 1 ≤ c1, c2 < 10. The term “div.”means
that the iteration does not satisfy a stopping criterion |fi(xk)| < 10−6 within
the maximum number of iterations Kmax = 105. The number of function
evaluations (NFE) is also given, where the cost of f ′(xk) in Newton method
is counted as 2. One can see that the new method is superior to the other
methods for most examples. Particularly, it should be noted that f5(x), f6(x)
and f7(x) have so pathological behavior that most existing iterative methods
require very many iterations to produce sufficiently accurate approximation,
or they even fail to converge. In contrast, as shown in Table 2, the presented
method seems to be still available for these examples.

For the improper cases such as f6(x) = 0 and f7(x) = 0, noting that the
convergence of the presented method is rather slow, we can obtain more efficient
initial approximation by using the non-iterative method [13, 10]. That is, in
the proposed iteration (2.5), we replace the initial approximation x0 by ξN,0

evaluated as below.

(4.1) ξN,0 =
1

2
{a+ b+ sgn(f(a))IN (sgn(f))} ,

where IN (sgn(f)) is a numerical integration of sgn(f) on the given interval
(a, b). If we employ the N point trapezoidal rule, the formula (4.1) becomes

(4.2) ξN,0 =
1

2

a+ b+ sgn(f(a))
b− a

N

N−1∑
j=1

sgn(f(tj))


for the integration points tj = a + j(b − a)/N . For an exact zero p of f(x),
it can be easily seen that |p − ξN,0| < δ = (b − a)/(2N), and thus we take an
interval

(4.3) (a′, b′) = (ξN,0 − δ, ξN,0 + δ) ,

which includes the root p. Therefore we may consider a hybrid method in
which the interval (a′, b′), instead of (a, b), is used as an initial interval in
implementing the presented iterative method (2.5). It should be noted that
this method requires only N − 1 additional evaluations of the sign of f(x) as a
preprocess.

Table 2. Numerical results of the presented method, the secant
method and the Newton method for the examples fi(x) = 0, i =
1, 2, . . . , 7. The term (−h)k means |fi(xk)| = O

(
10−h

)
in the kth

iteration.

Examples
presented method secant method Newton method
|fi(xk)| NFE |fi(xk)| NFE |fi(xk)| NFE
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f1(x) = 0 (−40)7 14 (−21)11 11 (−26)8 24
f2(x) = 0 (−40)7 14 (−22)26 26 (−38)14 42
f3(x) = 0 (−22)6 12 (−29)21 21 (−28)8 24
f4(x) = 0 (−35)7 14 (−28)11 11 (−21)7 21
f5(x) = 0 (−25)6 12 (−23)11 11 (−21)33 99
f6(x) = 0 (−21)16 32 div. – (−39)33 99
f7(x) = 0 (−34)27 54 div. – div. –

In Table 3, for the examples f6(x) = 0 and f7(x) = 0, numerical results of
the hybrid methods associated with the presented method, the Newton method
and the Ostrowski method [8] of order 4 are included. The Ostrowski method
is given by

xk+1 = xk − uk + uk
f(xk − uk)

2f(xk − uk)− f(xk)
, uk =

f(xk)

f ′(xk)
.

In Table 3 ξN,k denotes the kth approximation with the initial approximation
ξN,0 and the initial interval (a′, b′) in (4.3). Referring to the results in Table 2,
one can see that the convergence rate was considerably improved by the hy-
brid method based on the presented method with small number of integration
points N . On the other hand, though the hybrid methods associated with
the Newton method and the Ostrowski method bring out excellent results for
the equation f6(x) = 0, they require sufficiently large N in order to obtain
convergent approximations for some improper equation such as f7(x) = 0.

Table 3. Numerical results of the hybrid iteration methods using
the initial guess ξN,0 in (4.2) for each number of integration points
N = 4, 32, 64.

Examples N
presented method Newton method Ostrowski method
|fi(ξN,k)| NFE |fi(ξN,k)| NFE |fi(ξN,k)| NFE

f6(x) = 0
4 (−25)9 18 (−33)8 24 (−50)4 16
32 (−32)5 10 (−26)5 15 (−61)3 12
64 (−32)5 10 (−36)5 15 (−20)2 8

f7(x) = 0
4 (−25)11 22 div. – div. –
32 (−31)7 14 div. – div. –
64 (−36)6 12 (−34)6 18 (−37)3 12

In addition, we consider the test functions given in [2] for which Newton
method is not appropriate as below.

Example 8. f8(x) = e1−x − 1 , 0 ≤ x ≤ 7
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for which Newton method requires very many iterations to approach the root
p = 1 when the initial approximation x0 is far from 1.

Example 9. f9(x) = xe−x , −1 ≤ x ≤ 2

for which the iterates obtained by Newton method, with any initial approxi-
mation x0 > 1, move away from the root p = 0.

Numerical results for these examples are given in Table 4, which shows that
the presented method can be a good alternative to Newton method in these
cases as well.

Table 4. Numerical results for the examples for which Newton
method is not appropriate.

Examples
presented method Newton method
xk |fi(xk)| NFE xk |fi(xk)| NFE

f8(x) = 0 1. (−22)6 12 1. (−31)403 1209

f9(x) = 0 −2.1× 10−21 (−21)6 12 50.6836 (−21)45 135

5. Conclusions

In this paper, for solving a nonlinear equation f(x) = 0, we have developed a
new simple iterative method given by (2.5) which has the following properties:

i. Problem of choosing an appropriate initial approximation need not be
concerned.

ii. Any derivatives of f(x) are not needed.
iii. The hybrid method based on the presented method, with the initial

guess ξN,0 in (4.2) and the initial interval (a′, b′) in (4.3), can highly
improve the convergence rate with small number of additional function
evaluations even if the equation is so pathological such as f7(x) = 0.

iv. The convergence order is 2 which is equal to that of the Newton method.
In practice, for most numerical examples the presented method is bet-
ter (in the sense of the advantages i.–iii.) than the Newton method.
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