References
-
D. A. Cox, Primes of the form
$x^2+ny^2$ : Fermat, Class Field, and Complex Multiplication, John Wiley & Sons, Inc., New York, 1989. - I. S. Eum, J. K. Koo, and D. H. Shin, Ring class invariants over imaginary quadratic fields, Forum Math. 28 (2016), no. 2, 201-217. https://doi.org/10.1515/forum-2014-0007
- G. J. Janusz, Algebraic Number Fields, 2nd edition, Grad. Studies in Math. 7, Amer. Math. Soc., Providence, R. I., 1996.
- H. Y. Jung, J. K. Koo, and D. H. Shin, Ray class invariants over imaginary quadratic fields, Tohoku Math. J. (2) 63 (2011), no. 3, 413-426. https://doi.org/10.2748/tmj/1318338949
- J. K. Koo and D. H. Shin, Function fields of certain arithmetic curves and application, Acta Arith. 141 (2010), no. 4, 321-334. https://doi.org/10.4064/aa141-4-2
- J. K. Koo and D. H. Shin, On some arithmetic properties of Siegel functions, Math. Z. 264 (2010), no. 1, 137-177. https://doi.org/10.1007/s00209-008-0456-9
- D. Kubert and S. Lang, Modular Units, Grundlehren der mathematischen Wissenschaften 244, Spinger-Verlag, 1981.
- S. Lang, Elliptic Functions, With an appendix by J. Tate, 2nd edition, Grad. Texts in Math. 112, Spinger-Verlag, New York, 1987.
- K. Ono, The Web of Modularity: Arithmetic of the Coeffcients of Modular Forms and q-series, CBMS Regional Conf. Series in Math. 102, Amer. Math. Soc., Providence, R. I., 2004.
- K. Ramachandra, Some applications of Kronecker's limit formula, Ann. of Math. (2) 80 (1964), 104-148. https://doi.org/10.2307/1970494
- R. Schertz, Construction of ray class fields by elliptic units, J. Theor. Nombres Bordeaux 9 (1997), no. 2, 383-394. https://doi.org/10.5802/jtnb.209
- J.-P. Serre, A Course in Arithmetic, Grad. texts in Math., Springer-Verlag, New York-Heidelberg, 1973.
- G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, N. J., 1971.
- P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class Field Theory-Its Centenary and Prospect (Tokyo, 1998), 161-176, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001.
- A.Weil, Number Theory: An Approach Through History; From Hammurapi to Legendre, Birkhauser Boston, Inc., Boston, MA, 1984.
- P. J. Weinberger, Exponents of the class groups of complex quadratic fields, Acta Arith. 22 (1973), 117-124. https://doi.org/10.4064/aa-22-2-117-124