DOI QR코드

DOI QR Code

GENERATION OF RING CLASS FIELDS BY ETA-QUOTIENTS

  • Received : 2017.01.25
  • Accepted : 2017.05.04
  • Published : 2018.01.01

Abstract

We generate ring class fields of imaginary quadratic fields in terms of the special values of certain eta-quotients, which are related to the relative norms of Siegel-Ramachandra invariants. These give us minimal polynomials with relatively small coefficients from which we are able to solve certain quadratic Diophantine equations concerning non-convenient numbers.

Keywords

References

  1. D. A. Cox, Primes of the form $x^2+ny^2$: Fermat, Class Field, and Complex Multiplication, John Wiley & Sons, Inc., New York, 1989.
  2. I. S. Eum, J. K. Koo, and D. H. Shin, Ring class invariants over imaginary quadratic fields, Forum Math. 28 (2016), no. 2, 201-217. https://doi.org/10.1515/forum-2014-0007
  3. G. J. Janusz, Algebraic Number Fields, 2nd edition, Grad. Studies in Math. 7, Amer. Math. Soc., Providence, R. I., 1996.
  4. H. Y. Jung, J. K. Koo, and D. H. Shin, Ray class invariants over imaginary quadratic fields, Tohoku Math. J. (2) 63 (2011), no. 3, 413-426. https://doi.org/10.2748/tmj/1318338949
  5. J. K. Koo and D. H. Shin, Function fields of certain arithmetic curves and application, Acta Arith. 141 (2010), no. 4, 321-334. https://doi.org/10.4064/aa141-4-2
  6. J. K. Koo and D. H. Shin, On some arithmetic properties of Siegel functions, Math. Z. 264 (2010), no. 1, 137-177. https://doi.org/10.1007/s00209-008-0456-9
  7. D. Kubert and S. Lang, Modular Units, Grundlehren der mathematischen Wissenschaften 244, Spinger-Verlag, 1981.
  8. S. Lang, Elliptic Functions, With an appendix by J. Tate, 2nd edition, Grad. Texts in Math. 112, Spinger-Verlag, New York, 1987.
  9. K. Ono, The Web of Modularity: Arithmetic of the Coeffcients of Modular Forms and q-series, CBMS Regional Conf. Series in Math. 102, Amer. Math. Soc., Providence, R. I., 2004.
  10. K. Ramachandra, Some applications of Kronecker's limit formula, Ann. of Math. (2) 80 (1964), 104-148. https://doi.org/10.2307/1970494
  11. R. Schertz, Construction of ray class fields by elliptic units, J. Theor. Nombres Bordeaux 9 (1997), no. 2, 383-394. https://doi.org/10.5802/jtnb.209
  12. J.-P. Serre, A Course in Arithmetic, Grad. texts in Math., Springer-Verlag, New York-Heidelberg, 1973.
  13. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, N. J., 1971.
  14. P. Stevenhagen, Hilbert's 12th problem, complex multiplication and Shimura reciprocity, Class Field Theory-Its Centenary and Prospect (Tokyo, 1998), 161-176, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001.
  15. A.Weil, Number Theory: An Approach Through History; From Hammurapi to Legendre, Birkhauser Boston, Inc., Boston, MA, 1984.
  16. P. J. Weinberger, Exponents of the class groups of complex quadratic fields, Acta Arith. 22 (1973), 117-124. https://doi.org/10.4064/aa-22-2-117-124