• 제목/요약/키워드: q-Euler numbers

검색결과 41건 처리시간 0.027초

q-ADDITION THEOREMS FOR THE q-APPELL POLYNOMIALS AND THE ASSOCIATED CLASSES OF q-POLYNOMIALS EXPANSIONS

  • Sadjang, Patrick Njionou
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1179-1192
    • /
    • 2018
  • Several addition formulas for a general class of q-Appell sequences are proved. The q-addition formulas, which are derived, involved not only the generalized q-Bernoulli, the generalized q-Euler and the generalized q-Genocchi polynomials, but also the q-Stirling numbers of the second kind and several general families of hypergeometric polynomials. Some q-umbral calculus generalizations of the addition formulas are also investigated.

REFLECTION SYMMETRIES OF THE q-GENOCCHI POLYNOMIALS

  • Ryoo, Cheon-Seoung
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1277-1284
    • /
    • 2010
  • One purpose of this paper is to consider the reflection symmetries of the q-Genocchi polynomials $G^*_{n,q}(x)$. We also observe the structure of the roots of q-Genocchi polynomials, $G^*_{n,q}(x)$, using numerical investigation. By numerical experiments, we demonstrate a remarkably regular structure of the real roots of $G^*_{n,q}(x)$.

SOME IDENTITIES OF THE GENOCCHI NUMBERS AND POLYNOMIALS ASSOCIATED WITH BERNSTEIN POLYNOMIALS

  • Lee, H.Y.;Jung, N.S.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • 제29권5_6호
    • /
    • pp.1221-1228
    • /
    • 2011
  • Recently, several mathematicians have studied some interesting relations between extended q-Euler number and Bernstein polynomials(see [3, 5, 7, 8, 10]). In this paper, we give some interesting identities on the Genocchi polynomials and Bernstein polynomials.

UNIFIED APOSTOL-KOROBOV TYPE POLYNOMIALS AND RELATED POLYNOMIALS

  • Kurt, Burak
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.315-326
    • /
    • 2021
  • Korobov type polynomials are introduced and extensively investigated many mathematicians ([1, 8-10, 12-14]). In this work, we define unified Apostol Korobov type polynomials and give some recurrences relations for these polynomials. Further, we consider the q-poly Korobov polynomials and the q-poly-Korobov type Changhee polynomials. We give some explicit relations and identities above mentioned functions.

SYMMETRIC PROPERTIES OF CARLITZ'S TYPE (p, q)-GENOCCHI POLYNOMIALS

  • KIM, A HYUN
    • Journal of applied mathematics & informatics
    • /
    • 제37권3_4호
    • /
    • pp.317-328
    • /
    • 2019
  • This paper defines Carlitz's type (p, q)-Genocchi polynomials and Carlitz's type (h, p, q)-Genocchi polynomials, and explains fourteen properties which can be complemented by Carlitz's type (p, q)-Genocchi polynomials and Carlitz's type (h, p, q)-Genocchi polynomials, including distribution relation, symmetric property, and property of complement. Also, it explores alternating powers sums by proving symmetric property related to Carlitz's type (p, q)-Genocchi polynomials.

ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

  • Kim, Tae-Kyun;Rim, Seog-Hoon;Simsek, Yilmaz;Kim, Dae-Yeoul
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.435-453
    • /
    • 2008
  • In this paper, by using q-deformed bosonic p-adic integral, we give $\lambda$-Bernoulli numbers and polynomials, we prove Witt's type formula of $\lambda$-Bernoulli polynomials and Gauss multiplicative formula for $\lambda$-Bernoulli polynomials. By using derivative operator to the generating functions of $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, we give Hurwitz type $\lambda$-zeta functions and Dirichlet's type $\lambda$-L-functions; which are interpolated $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, respectively. We give generating function of $\lambda$-Bernoulli numbers with order r. By using Mellin transforms to their function, we prove relations between multiply zeta function and $\lambda$-Bernoulli polynomials and ordinary Bernoulli numbers of order r and $\lambda$-Bernoulli numbers, respectively. We also study on $\lambda$-Bernoulli numbers and polynomials in the space of locally constant. Moreover, we define $\lambda$-partial zeta function and interpolation function.

수학원리와 특성 진단을 기반으로 한 공개키 RSA 알고리즘의 현장 적용 프로세스 (A Study of Field Application Process of Public Key Algorithm RSA Based on Mathematical Principles and Characteristics through a Diagnostic)

  • 노시춘;송은지;문송철
    • 서비스연구
    • /
    • 제5권2호
    • /
    • pp.71-81
    • /
    • 2015
  • RSA 공개키 암호화 알고리즘에서는 소수, 키 생성, 소인수분해, 오일러 함수, 키 셋업, 합동식과 법, 지수 처리가 응용된다. 이와같은 알고리즘의 토대는 수학원리이다. 수학원리 중에서 첫 번째 개념은 소수를 구하여 응용하는 방법에서 출발한다. 두 개의 매우 큰 소수의 곱을 구하는 것은 용이 하지만 그 곱에서 원래의 두 개의 소수를 역 추적하는 것은 매우 어렵다는 원리를 이용한다. p와 q를 매우 큰 소수라 하면 이 두 개의 곱 $n=p{\times}q$를 구하는 것은 쉽지만 역으로, 합성수인 n에서 p와 q를 추적하는 방법은 거의 불가능하다. RSA 암호화 알고리즘에서는 수학적으로 역함수 계산이 어려운 일방향 함수를 구현하기 위해 자리수가 많은 양의 정수의 소인수 분해 문제를 사용하고 있다. 역 방향으로의 계산을 어렵게 하기 위해 mod의 개념을 소인수 분해 문제에 더해서 사용한다. 암호화에 대한 관심분야는 대개 알고리즘 구현과 사용에 집중되고 있지만 막상 암호 알고리즘을 처음 도입하는 경우에는 어떤 프로세스를 거쳐야 현장 업무에 적용되는지를 알 수 없다. 본 연구는 공개키 알고리즘 속성 진단을 기반으로 한 현장 업무 암호화 적용 프로세스 방안을 제시한다.

RSA의 오일러 함수 𝜙(n) 해독 2kβ 알고리즘 (A 2kβ Algorithm for Euler function 𝜙(n) Decryption of RSA)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권7호
    • /
    • pp.71-76
    • /
    • 2014
  • 대표적인 공개키 암호방식인 RSA에 사용되는 합성수 n=pq의 큰자리 소수 p,q를 소인수분해하여 구하는 것은 사실상 불가능하다. 공개키 e와 합성수 n은 알고 개인키 d를 모를 때, ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$을 구하여 $d=e^{-1}(mod{\phi}(n))$의 역함수로 개인키 d를 해독할수 있다. 따라서 ${\phi}(n)$을 알기위해 n으로부터 p,q를 구하는 수학적 난제인 소인수분해법을 적용하고 있다. 소인수분해법에는 n/p=q의 나눗셈 시행법보다는 $a^2{\equiv}b^2(mod\;n)$, a=(p+q)/2,b=(q-p)/2의 제곱합동법이 일반적으로 적용되고 있다. 그러나 다양한 제곱합동법이 존재함에도 불구하고 아직까지도 많은 RSA 수들이 해독되지 않고 있다. 본 논문은 ${\phi}(n)$을 직접 구하는 알고리즘을 제안하였다. 제안된 알고리즘은 $2^j{\equiv}{\beta}_j(mod\;n)$, $2^{{\gamma}-1}$ < n < $2^{\gamma}$, $j={\gamma}-1,{\gamma},{\gamma}+1$에 대해 $2^k{\beta}_j{\equiv}2^i(mod\;n)$, $0{\leq}i{\leq}{\gamma}-1$, $k=1,2,{\ldots}$ 또는 $2^k{\beta}_j=2{\beta}_j$${\phi}(n)$을 구하였다. 제안된 알고리즘은 $n-10{\lfloor}{\sqrt{n}}{\rfloor}$ < ${\phi}(n){\leq}n-2{\lfloor}{\sqrt{n}}{\rfloor}$의 임의의 위치에 존재하는 ${\phi}(n)$도 약 2배 차이의 수행횟수로 찾을 수 있었다.