DOI QRμ½”λ“œ

DOI QR Code

A 2kΞ² Algorithm for Euler function πœ™(n) Decryption of RSA

RSA의 였일러 ν•¨μˆ˜ πœ™(n) 해독 2kΞ² μ•Œκ³ λ¦¬μ¦˜

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • μ΄μƒμš΄ (κ°•λ¦‰μ›μ£ΌλŒ€ν•™κ΅ 멀티미디어곡학과)
  • Received : 2014.05.21
  • Accepted : 2014.07.09
  • Published : 2014.07.31

Abstract

There is to be virtually impossible to solve the very large digits of prime number p and q from composite number n=pq using integer factorization in typical public-key cryptosystems, RSA. When the public key e and the composite number n are known but the private key d remains unknown in an asymmetric-key RSA, message decryption is carried out by first obtaining ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$ and then using a reverse function of $d=e^{-1}(mod{\phi}(n))$. Integer factorization from n to p,q is most widely used to produce ${\phi}(n)$, which has been regarded as mathematically hard. Among various integer factorization methods, the most popularly used is the congruence of squares of $a^2{\equiv}b^2(mod\;n)$, a=(p+q)/2,b=(q-p)/2 which is more commonly used then n/p=q trial division. Despite the availability of a number of congruence of scares methods, however, many of the RSA numbers remain unfactorable. This paper thus proposes an algorithm that directly and immediately obtains ${\phi}(n)$. The proposed algorithm computes $2^k{\beta}_j{\equiv}2^i(mod\;n)$, $0{\leq}i{\leq}{\gamma}-1$, $k=1,2,{\ldots}$ or $2^k{\beta}_j=2{\beta}_j$ for $2^j{\equiv}{\beta}_j(mod\;n)$, $2^{{\gamma}-1}$ < n < $2^{\gamma}$, $j={\gamma}-1,{\gamma},{\gamma}+1$ to obtain the solution. It has been found to be capable of finding an arbitrarily located ${\phi}(n)$ in a range of $n-10{\lfloor}{\sqrt{n}}{\rfloor}$ < ${\phi}(n){\leq}n-2{\lfloor}{\sqrt{n}}{\rfloor}$ much more efficiently than conventional algorithms.

λŒ€ν‘œμ μΈ κ³΅κ°œν‚€ μ•”ν˜Έλ°©μ‹μΈ RSA에 μ‚¬μš©λ˜λŠ” ν•©μ„±μˆ˜ n=pq의 큰자리 μ†Œμˆ˜ p,qλ₯Ό μ†ŒμΈμˆ˜λΆ„ν•΄ν•˜μ—¬ κ΅¬ν•˜λŠ” 것은 사싀상 λΆˆκ°€λŠ₯ν•˜λ‹€. κ³΅κ°œν‚€ e와 ν•©μ„±μˆ˜ n은 μ•Œκ³  κ°œμΈν‚€ dλ₯Ό λͺ¨λ₯Ό λ•Œ, ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$을 κ΅¬ν•˜μ—¬ $d=e^{-1}(mod{\phi}(n))$의 μ—­ν•¨μˆ˜λ‘œ κ°œμΈν‚€ dλ₯Ό ν•΄λ…ν• μˆ˜ μžˆλ‹€. λ”°λΌμ„œ ${\phi}(n)$을 μ•ŒκΈ°μœ„ν•΄ nμœΌλ‘œλΆ€ν„° p,qλ₯Ό κ΅¬ν•˜λŠ” μˆ˜ν•™μ  λ‚œμ œμΈ μ†ŒμΈμˆ˜λΆ„ν•΄λ²•μ„ μ μš©ν•˜κ³  μžˆλ‹€. μ†ŒμΈμˆ˜λΆ„ν•΄λ²•μ—λŠ” n/p=q의 λ‚˜λˆ—μ…ˆ μ‹œν–‰λ²•λ³΄λ‹€λŠ” $a^2{\equiv}b^2(mod\;n)$, a=(p+q)/2,b=(q-p)/2의 μ œκ³±ν•©λ™λ²•μ΄ 일반적으둜 적용되고 μžˆλ‹€. κ·ΈλŸ¬λ‚˜ λ‹€μ–‘ν•œ μ œκ³±ν•©λ™λ²•μ΄ μ‘΄μž¬ν•¨μ—λ„ λΆˆκ΅¬ν•˜κ³  μ•„μ§κΉŒμ§€λ„ λ§Žμ€ RSA μˆ˜λ“€μ΄ ν•΄λ…λ˜μ§€ μ•Šκ³  μžˆλ‹€. λ³Έ 논문은 ${\phi}(n)$을 직접 κ΅¬ν•˜λŠ” μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ•ˆν•˜μ˜€λ‹€. μ œμ•ˆλœ μ•Œκ³ λ¦¬μ¦˜μ€ $2^j{\equiv}{\beta}_j(mod\;n)$, $2^{{\gamma}-1}$ < n < $2^{\gamma}$, $j={\gamma}-1,{\gamma},{\gamma}+1$에 λŒ€ν•΄ $2^k{\beta}_j{\equiv}2^i(mod\;n)$, $0{\leq}i{\leq}{\gamma}-1$, $k=1,2,{\ldots}$ λ˜λŠ” $2^k{\beta}_j=2{\beta}_j$둜 ${\phi}(n)$을 κ΅¬ν•˜μ˜€λ‹€. μ œμ•ˆλœ μ•Œκ³ λ¦¬μ¦˜μ€ $n-10{\lfloor}{\sqrt{n}}{\rfloor}$ < ${\phi}(n){\leq}n-2{\lfloor}{\sqrt{n}}{\rfloor}$의 μž„μ˜μ˜ μœ„μΉ˜μ— μ‘΄μž¬ν•˜λŠ” ${\phi}(n)$도 μ•½ 2λ°° 차이의 μˆ˜ν–‰νšŸμˆ˜λ‘œ 찾을 수 μžˆμ—ˆλ‹€.

Keywords

References

  1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to Algorithms," 2nd Ed., MIT Press and McGraw-Hill. pp. 887-896, 2001.
  2. D. R. Stinson, "Cryptography: Theory and Practice," 3rd ed., London, CRC Press, 2006.
  3. B. Raiter, "How the RSA Cipher Works", http://www.tutorialized.com/tutorial/How-the-RSA-Cipher-Works/42395, 2009.
  4. M. Seysen, "A probabilistic factorization algorithm with quadratic forms of negative discriminant", Mathematics of Computation, Vol. 48, No. 178, pp. 757-780, Apr. 1987. https://doi.org/10.1090/S0025-5718-1987-0878705-X
  5. C. P. Schnorr, "Refined analysis and improvements on some factoring algorithms", Journal of Algorithms, Vol. 3, No. 2, pp. 101-127, Jun. 1982. https://doi.org/10.1016/0196-6774(82)90012-8
  6. Wikipedia, "Integer Factorization," http://en.wikipedia.org/wiki/Integer_factorization, 2014.
  7. Wikipedia, "RSA Factoring Challenge," http://en.wikipedia.org/wiki/RSA_Factoring_challenge, 2014.
  8. K. Ford, "The Number of Solutions of ${\phi}$ (x)=m", Annals of Mathematics, Vol. 150, No. 1, pp. 283-311, Jan. 1999. https://doi.org/10.2307/121103
  9. A. A. Razborov and S. Rudich, "Natural proofs", Journal of Computer and System Sciences, Vol. 55, No. 1, pp. 24-35, Aug. 1997. https://doi.org/10.1006/jcss.1997.1494
  10. A. Stein and E. Teske, "Optimized Baby step-Giant step Methods," Journal of the Ramanujan Mathematical Society, Vol. 20, No. 1, pp. 1-32, Jan. 2005.
  11. D. C. Terr, "A modification of Shanks' Baby-step Giant-step algorithm," Mathematics of Computation, Vol. 69, No. 230, pp. 767-773, Apr. 2000.
  12. S. U. Lee, "Square-and-Divide Modular Exponentiation," Journal of Korea Society of Computer Information, Vol. 18, No. 4, pp. 123-129, Apr. 2013. https://doi.org/10.9708/jksci.2013.18.4.123
  13. S. U. Lee, "Modified Baby-Step Giant-Step Algorithm for Discrete Logarithm," Journal of Korea Society of Computer Information, Vol. 18, No. 8, pp. 87-93, Aug. 2013. https://doi.org/10.9708/jksci.2013.18.8.087

Cited by

  1. κ³΅μΈμ „μžλ¬Έμ„œ μ†Œν†΅μ„ μœ„ν•œ Document-HTML λ¬Έμ„œ 생성 κΈ°λ²•μ˜ 섀계 vol.44, pp.1, 2021, https://doi.org/10.11627/jkise.2021.44.1.051