• Title/Summary/Keyword: pumping process

Search Result 202, Processing Time 0.03 seconds

Prediction model of 4.5 K sorption cooler for integrating with adiabatic demagnetization refrigerator (ADR)

  • Kwon, Dohoon;Kim, Jinwook;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.23-28
    • /
    • 2022
  • A sorption cooler, which utilizes helium-4 as a working fluid, was previously developed and tested in KAIST. The cooler consists of a sorption pump and a thermosyphon. The developed sorption cooler aims to pre-cool a certain amount of the magnetic refrigerant of an adiabatic demagnetization refrigerator (ADR) from 4.5 K to 2.5 K. To simulate the high heat capacitance of the magnetic refrigerant, liquid helium was utilized not only as a refrigerant for the sorption cooling but also as a thermal capacitor. The previous experiment, however, showed that the lowest temperature of 2.7 K which was slightly higher than the target temperature (2.5 K) was achieved due to the radiation heat leak. This excessive heat leak would not occur when the sorption cooler is completely integrated with the ADR. Thus, based on the experimentally obtained pumping speed, the prediction model for the sorption cooler is developed in this study. The presented model in this paper assumes the sorption cooler is integrated with the ADR and the heat leak is negligible. The model predicts the amount of the liquid helium and the required time for the sorption cooling process. Furthermore, it is confirmed that the performance of the sorption cooler is enhanced by reducing the volume of the thermosiphon. The detailed results and discussions are summarized.

Simulation of High Vacuum Characteristics by VacTran Simulator

  • Kim, Hyung-Taek;Jeong, Hyeongwon
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.88-95
    • /
    • 2022
  • Vacuum simulation is associated with the prediction and calculation of how materials, pumps and systems will perform using mathematical equations. In this investigation, three different high vacuum systems were simulated and estimated with each vacuum characteristics by VacTran simulator. In each of modelled vacuum systems, selection of gas loads into vessel, combination of rough and high vacuum pumps and dimension of conductance elements were proposed as system variables. In pump station model, the pumping speed to pressures by the combination of root pump was analyzed under the variations of vessel volume. In this study, the effects of outgassing dependent on vessel materials was also simulated and aluminum vessel was estimated to optimum materials. It was obtained from the modelling with diffusion pump that the diameter, length of 50×250[mm]roughing line was characterized as optimum variables to reach the ultimate pressure of 10E-7[torr]. Optimum design factors for vacuum characteristics of modelled vacuum system were achieved by VacTran simulator. Feasibility of VacTran as vacuum simulator was verified and applications of VacTran in high tech process expected to be increased.

Geochemical Analysis and Fates of Pathogenic Indicating Bacteria on Seawater Intrusion in a Sand Box Model (인공 대수층내에서 발생하는 해수침투의 지화학적 분석 및 병원성 지표 미생물의 사멸 특성)

  • Lee, So-Jung;Park, Hun-Ju;Sung, Eun-Hae;So, Myung-Ho;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.385-392
    • /
    • 2008
  • In this study, seawater intrusion was assessed employing a kind of biological parameters such as Escherichia coli and Enterococcus faecalis while lab-prepared reclaimed water was recharged to prevent seawater intrusion. Chemical factors indicating seawater intrusion such as Cl$^-$, Ca$^{2+}$, Mg$^{2+}$ and specific conductivity were also simultaneously investigated where an ion exchange between a matrix in artificial aquifer and cations in solution was estimated. Both Escherichia coli and Enterococcus faecalis were shown to be very sensitive against degree of salinity during saline water intrusion. Enterococcus faecalis more strongly resisted against salinity than that of Escherichia coli. The ratio of Enterococcus faecalis divided by E. coli in the process of seawater intrusion increased up to more than 50$\sim$100 times in 18 hours whereas E. coli was died off more than 90% during pumping and recharge rate kept at 10 mL/min. However, when the rates of both recharge and pumping was kept at 5 mL/min, Enterococcus faecalis / Escherichia coli was sustained in the range of 2.5$\sim$5.0, while Escherichia coli showed dimished death rate. Chemical factors such as Cl$^-$, Ca$^{2+}$, Mg$^{2+}$ and specific conductivity showed more than 0.9 of high correlation each other well explaining the degree of seawater intrusion. The degree of ion exchange between artificial aquifer and saline water can be efficiently interpreted by both minus $\Delta$Na, $\Delta$Mg variation and positive $\Delta$Ca variation.

The relations between second-stage temperatures and gases partial pressures at the stainless steel high vacuum chamber by cryogenic pumping (크라이오 펌프를 이용한 스테인레스 스틸 고진공용기 배기에서 2차 냉각판 온도와 용기 내부의 기체 부분압 관계)

  • Hong S. S.;Lim J. Y.;Shin Y. H.;Chung K. H.;Arakawa Ichiro
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.139-144
    • /
    • 2004
  • Recently, the importance of clean vacuum and partial pressure measurement of gas species has been increased in the vaccum process. In this study, the partial pressures of $H_2$, He, C, N, $O_2$, $H_2O $, Ar/2, $N_2$(CO), Ar, $CO_2$ were measured by residual gas analyzer according to temperature of cryogenic pump which is used to clean vacuum generation and compared. The experimental results showed that the cryopanel temperature was reached to 12K after 72 minutes of pumping and after 25hours, the partial pressures in percent were 24.9 %, 6.6%, 5.5 %, 2.2 %, 3.8%, 30.7%, 6.5%, 6.1 %, 5.5%, 8.2% for $H_2$, He, C, N, $O_2$, $H_2O $, Ar/2, $N_2$, Ar, $CO_2$ respectively. The dominant gases were $H_2$ and $H_2O $, and the partial pressures were relatively high compare to other gases.

Design of MTP memory IP using vertical PIP capacitor (Vertical PIP 커패시터를 이용한 MTP 메모리 IP 설계)

  • Kim, Young-Hee;Cha, Jae-Han;Jin, Hongzhou;Lee, Do-Gyu;Ha, Pan-Bong;Park, Mu-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.48-57
    • /
    • 2020
  • MCU used in applications such as wireless chargers and USB type-C require MTP memory with a small cell size and a small additional process mask. Conventional double poly EEPROM cells are small in size, but additional processing masks of about 3 to 5 sheets are required, and FN tunneling type single poly EEPROM cells have a large cell size. In this paper, a 110nm MTP cell using a vertical PIP capacitor is proposed. The erase operation of the proposed MTP cell uses FN tunneling between FG and EG, and the program operation uses CHEI injection method, which reduces the MTP cell size to 1.09㎛2 by sharing the PW of the MTP cell array. Meanwhile, MTP memory IP required for applications such as USB type-C needs to operate over a wide voltage range of 2.5V to 5.5V. However, the pumping current of the VPP charge pump is the lowest when the VCC voltage is the minimum 2.5V, while the ripple voltage is large when the VCC voltage is 5.5V. Therefore, in this paper, the VPP ripple voltage is reduced to within 0.19V through SPICE simulation because the pumping current is suppressed to 474.6㎂ even when VCC is increased by controlling the number of charge pumps turned on by using the VCC detector circuit.

A DC-DC Converter Design for OLED Display Module (OLED Display Module용 DC-DC 변환기 설계)

  • Lee, Tae-Yeong;Park, Jeong-Hun;Kim, Jeong-Hoon;Kim, Tae-Hoon;Vu, Cao Tuan;Kim, Jeong-Ho;Ban, Hyeong-Jin;Yang, Gweon;Kim, Hyoung-Gon;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.517-526
    • /
    • 2008
  • A one-chip DC-DC converter circuit for OLED(Organic Light-Emitting Diode) display module of automotive clusters is newly proposed. OLED panel driving voltage circuit, which is a charge-pump type, has improved characteristics in miniaturization, low cost and EMI(Electro-Magnetic Interference) compared with DC-DC converter of PWM(Pulse Width Modulator) type. By using bulk-potential biasing circuit, charge loss due to parasitic PNP BJT formed in charge pumping, is prevented. In addition, the current dissipation in start-up circuit of band-gap reference voltage generator is reduced by 42% and the layout area of ring oscillator is reduced by using a logic voltage VLP in ring oscillator circuit using VDD supply voltage. The driving current of VDD, OLED driving voltage, is over 40mA, which is required in OLED panels. The test chip is being manufactured using $0.25{\mu}m$ high-voltage process and the layout area is $477{\mu}m{\times}653{\mu}m$.

Development of a shot noise process based rainfall-runoff model for urban flood warning system (도시홍수예경보를 위한 shot noise process 기반 강우-유출 모형 개발)

  • Kang, Minseok;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.19-33
    • /
    • 2018
  • This study proposed a rainfall-runoff model for the purpose of real-time flood warning in urban basins. The proposed model was based on the shot noise process, which is expressed as a sum of shot noises determined independently with the peak value, decay parameter and time delay of each sub-basin. The proposed model was different from other rainfall-runoff models from the point that the runoff from each sub-basin reaches the basin outlet independently. The model parameters can be easily determined by the empirical formulas for the concentration time and storage coefficient of a basin and those of the pipe flow. The proposed model was applied to the total of three rainfall events observed at the Jungdong, Guro 1 and Daerim 2 pumping stations to evaluate its applicability. Summarizing the results is as follows. (1) The unit response function of the proposed model, different from other rainfall-runoff models, has the same shape regardless of the rainfall duration. (2) The proposed model shows a convergent shape as the calculation time interval becomes smaller. As the proposed model was proposed to be applied to urban basins, one-minute of calculation time interval would be most appropriate. (3) Application of the one-minute unit response function to the observed rainfall events showed that the simulated runoff hydrographs were very similar to those observed. This result indicates that the proposed model has a good application potential for the rainfall-runoff analysis in urban basins.

Real-time Contaminant Particle Monitoring for Chemical Vapor Deposition of Borophosphosilicate and Phosphosilicate Glass Film by using In-situ Particle Monitor and Particle Beam Mass Spectrometer (ISPM 및 PBMS를 이용한 BPSG 및 PSG CVD 공정 중 발생하는 오염입자의 실시간 측정)

  • Na, Jeong Gil;Choi, Jae Boong;Moon, Ji Hoon;Lim, Sung Kyu;Park, Sang Hyun;Yi, Hun Jung;Chae, Seung Ki;Yun, Ju Young;Kang, Sang Woo;Kim, Tae Sung
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.139-145
    • /
    • 2010
  • In this study, we investigated the particle formation during the deposition of borophosphosilicate glass (BPSG) and phosphosilicate glass (PSG) films in thermal chemical vapor deposition reactor using in-situ particle monitor (ISPM) and particle beam mass spectrometer (PBMS) which installed in the reactor exhaust line. The particle current and number count are monitored at set-up, stabilize, deposition, purge and pumping process step in real-time. The particle number distribution at stabilize step was measured using PBMS and compared with SEM image data. The PBMS and SEM analysis data shows the 110 nm and 80 nm of mode diameter for BPSG and PSG process, respectively.

Suggestions for Ecological Stream Restoration (생태하천 복원 방안)

  • Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.59-68
    • /
    • 2007
  • Urban streams have been severely degraded with wastewater and concrete structure over a prolonged period. The Chonggyecheon Restoration Project recovered a stream in the downtown Seoul with landscaping, plantings and bridges after the cover concrete and elevated asphalt road were removed. The project has been criticized partly because it is not an ecological restoration but rather the development of an urban park with an unnaturally straight flowing stream, artificial building structures, and artificial water pumping from the Han River. Nevertheless, the public have praised the project and almost 100,000 visitors per day come to see the reeds, catfish, and ducks. The stream restoration project is attractive to central and regional government decision makers because it increases the public concern of landscape amenity. Several projects such as Sanjichon and Kaeumjungchon are on going and proposed. These projects have a common and different respect in scope and procedure. The Chonggyecheon project in the process of environmental impact assessment (EIA) and prior environmental review system (PERS) reviewed the environmental impacts before development. Kaeumjungchon in the PERS and Sanjichon without EIA and PERS are reviewed. EIA and PERS systems contribute to checking the ecological sustainability of the restoration projects. A stream restoration project is a very complex task, so an integrated approach from plan to project is needed for ecologically sound restoration. Ecological stream restoration requires 1) an assessment of the entire stream ecosystem 2) establishing an ecologically sound management system of the stream reflecting not only benefits for people but also flora and fauna; 3) developing the site-specific design criteria and construction techniques including habitat restoration, flood plains conservation, and fluvial management; 4) considering the stream watershed in land use plan, EIA, PERS, and strategic environmental assessment (SEA). Additionally the process needs to develop the methodologies to enhance stakeholder's participation during planning, construction, and monitoring.

Deposition and Electrical Properties of Al2O3와 HfO2 Films Deposited by a New Technique of Proximity-Scan ALD (PS-ALD) (Proximity-Scan ALD (PS-ALD) 에 의한 Al2O3와 HfO2 박막증착 기술 및 박막의 전기적 특성)

  • Kwon, Yong-Soo;Lee, Mi-Young;Oh, Jae-Eung
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.148-152
    • /
    • 2008
  • A new cost-effective atomic layer deposition (ALD) technique, known as Proximity-Scan ALD (PS-ALD) was developed and its benefits were demonstrated by depositing $Al_2O_3$ and $HfO_2$ thin films using TMA and TEMAHf, respectively, as precursors. The system is consisted of two separate injectors for precursors and reactants that are placed near a heated substrate at a proximity of less than 1 cm. The bell-shaped injector chamber separated but close to the substrate forms a local chamber, maintaining higher pressure compared to the rest of chamber. Therefore, a system configuration with a rotating substrate gives the typical sequential deposition process of ALD under a continuous source flow without the need for gas switching. As the pressure required for the deposition is achieved in a small local volume, the need for an expensive metal organic (MO) source is reduced by a factor of approximately 100 concerning the volume ratio of local to total chambers. Under an optimized deposition condition, the deposition rates of $Al_2O_3$ and $HfO_2$ were $1.3\;{\AA}/cycle$ and $0.75\;{\AA}/cycle$, respectively, with dielectric constants of 9.4 and 23. A relatively short cycle time ($5{\sim}10\;sec$) due to the lack of the time-consuming "purging and pumping" process and the capability of multi-wafer processing of the proposed technology offer a very high through-put in addition to a lower cost.