Browse > Article

Real-time Contaminant Particle Monitoring for Chemical Vapor Deposition of Borophosphosilicate and Phosphosilicate Glass Film by using In-situ Particle Monitor and Particle Beam Mass Spectrometer  

Na, Jeong Gil (School of Mechanical Engineering, Sungkyunkwan University)
Choi, Jae Boong (School of Mechanical Engineering, Sungkyunkwan University)
Moon, Ji Hoon (Sungkyunkwan Advanced Institute of Nano Technology, Sungkyunkwan University)
Lim, Sung Kyu (National Nanofab Center)
Park, Sang Hyun (National Nanofab Center)
Yi, Hun Jung (Manufacturing Technology Team, Semiconductor Business, Samsung Electronics)
Chae, Seung Ki (Manufacturing Technology Team, Semiconductor Business, Samsung Electronics)
Yun, Ju Young (Vacuum Center, Korea Research Institute of Standards and Science)
Kang, Sang Woo (Vacuum Center, Korea Research Institute of Standards and Science)
Kim, Tae Sung (School of Mechanical Engineering, Sungkyunkwan University)
Publication Information
Particle and aerosol research / v.6, no.3, 2010 , pp. 139-145 More about this Journal
Abstract
In this study, we investigated the particle formation during the deposition of borophosphosilicate glass (BPSG) and phosphosilicate glass (PSG) films in thermal chemical vapor deposition reactor using in-situ particle monitor (ISPM) and particle beam mass spectrometer (PBMS) which installed in the reactor exhaust line. The particle current and number count are monitored at set-up, stabilize, deposition, purge and pumping process step in real-time. The particle number distribution at stabilize step was measured using PBMS and compared with SEM image data. The PBMS and SEM analysis data shows the 110 nm and 80 nm of mode diameter for BPSG and PSG process, respectively.
Keywords
PBMS (particle beam mass spectrometer); ISPM (in-situ particle monitor); BPSG (borophosphosilicate glass); PSG (phosphosilicate glass);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Armstrong, W. E. and Tolliver, D. L. (1974). A Scanning Electron Microscope Investigation of Glass Flow in MOS Integrated Circuit Fabrication, J. Electrochem. Soc., 121, 307-310.   DOI
2 Bowing, R. A. and Larrabee, G. B. (1985). Deposition and reflow of phosphosilicate glass, J. Electrochem. Soc., 132, 141-145.   DOI   ScienceOn
3 Bowling, R. A., Larrabee, G. B., and Fisher, W. G. (1989). Status and Needs of In-Situ Real-time Process Particle Detection, J. Environ. Sci., 32, 22-27.
4 Dance, D. L., Burghard, R. W., and Markle, R. J. (1992). Reducing Process Equipment Cost of Ownership Through In Situ Contamination Prevention and Reduction, Microcontamination, 10, 21-27.
5 Hara, T., Suzuki, H., and Furukawa, M. (1984). Reflow of PSG Layers by Halogen Lamp Short Duration Heating Technique, Jpn. J. Appl. Phys., 23, 452-454.   DOI
6 Kim, T., Suh, S. M., Girshick, S. L., Zachariah, M. R., McMurry, P. H., Rassel, R. M., Shen, Z., and Campbell, S. A. (2002). Particle formation during low-pressure chemical vapor deposition from silane and oxygen; Measurement, modeling and film properties, J. Vac. Sci. Technol. A, 20, 413-423.   DOI   ScienceOn
7 Liu, P., Ziemann, P. J., Kittelson, D. B., and McMurry, P. H. (1995). Generating Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions, Aerosol Sci. Technol., 22, 314-324.   DOI   ScienceOn
8 Liu, P., Ziemann, P. J., Kittelson, D. B., and McMurry, P. H. (1995). Generating Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions, Aerosol Sci. Technol., 22, 293-313.   DOI   ScienceOn
9 McMurry, P. H., Nijhawan, S., Rao, N., Ziemann, P., Kittelson, D. B., and Campbell, S. (1996). Particle-Beam Mass-Spectrometer Measurements of Particle Formation During Low- Pressure Chemical-Vapor-Deposition of Polysilicon and SiO2-Films, J. Vac. Sci. Technol. A, 14, 582-587.   DOI
10 Nijhawan, S., McMurry, P. H., Swihart, M. T., Suh, S. M., Girshick, S. L., Campbell, S. A., and Brockmann, J. E. (2003). An experimental and numerical study of particle nucleation and growth during low-pressure thermal decomposition of silane, J. Aerosol Sci., 34, 691-711.
11 Peters, L. (1992). 20 good reasons to use in situ particle monitors, Semicond. Int., 15, 52-57.
12 Rao, N. P., Wu, Z., Nijhawan, S., Ziemann, P., Campbell, S., Kittelson, D. B., and McMurry, P. (1998). Investigation of particle formation during the plasma enhanced chemical vapor deposition of amorphous silicon, oxide, and nitride films, J. Vac. Sci. Technol. B, 16, 483-489.   DOI
13 Shen, Z., Kim, T., Kortshagen, U., and McMurry, P. H., Campbell, S. A. (2003). The Formation of Highly Uniform Silicon Nanoparticles in High Density Silane Plasmas, J. Appl. Phys., 94, 2277-2283.   DOI   ScienceOn
14 Takahashi. K. M. and Daugherty. J. E. (1996). Current capabilities and limitations of in situ particle monitors in silicon processing equipment, J. Vac. Sci. Technol. A, 14, 2983-2993.   DOI   ScienceOn
15 Ziemann, P. J., Liu, P., Rao, N. P., Kittelson, D. B., and McMurry, P. H. (1995). Particle beam mass spectrometry of submicron particles charged to saturation in an electron beam, J. Aerosol. Sci., 26, 745-756.   DOI   ScienceOn