DOI QR코드

DOI QR Code

A DC-DC Converter Design for OLED Display Module

OLED Display Module용 DC-DC 변환기 설계

  • Published : 2008.03.31

Abstract

A one-chip DC-DC converter circuit for OLED(Organic Light-Emitting Diode) display module of automotive clusters is newly proposed. OLED panel driving voltage circuit, which is a charge-pump type, has improved characteristics in miniaturization, low cost and EMI(Electro-Magnetic Interference) compared with DC-DC converter of PWM(Pulse Width Modulator) type. By using bulk-potential biasing circuit, charge loss due to parasitic PNP BJT formed in charge pumping, is prevented. In addition, the current dissipation in start-up circuit of band-gap reference voltage generator is reduced by 42% and the layout area of ring oscillator is reduced by using a logic voltage VLP in ring oscillator circuit using VDD supply voltage. The driving current of VDD, OLED driving voltage, is over 40mA, which is required in OLED panels. The test chip is being manufactured using $0.25{\mu}m$ high-voltage process and the layout area is $477{\mu}m{\times}653{\mu}m$.

본 논문에서는 자동차 계기판의 OLED 디스플레이 모듈용 One-chip DC-DC 변환기 회로를 제안하였다. 전하 펌핑 방식의 OLED 패널 구동전압 회로는 PWM(Pulse Width Modulation) 방식을 사용한 DC-DC 변환기 회로에 비해 소형화, 저가격 및 낮은 EMI 특성을 갖는다. 그리고 Bulk-potential 바이어싱 회로를 사용하므로 전하 펌핑 시 기생하는 PNP BJT에 의한 전하 손실을 방지하도록 하였고, 밴드갭 기준전압 발생기의 Start-up 회로에서 전류소모를 기존 BGR 회로에 비해 42% 줄였고 VDD의 링 발진기 회로에 로직전원인 VLP를 사용하여 링 발진기기 레이아웃 면적을 줄였다. 또한 OLED 구동전압인 VDD의 구동 전류는 OLED 패널에서 요구하는 40mA 이상이다. $0.25{\mu}m$ High-voltage 공정을 이용하여 테스트 칩을 제작 중에 있으며, 레이아웃 면적은$477{\mu}m{\times}653{\mu}m$이다.

Keywords

References

  1. Naoya Kimura and Shuji Furuichi, "Development of Organic Light Emitting Diode(OLED) Driver for Automotive Component," Oki Technical Review, vol. 74, no. 3, pp.10-13, Oct. 2007
  2. Uchikoga, "Future trend of flat panel displays and comparison of its driving methods," 2006 IEEE International Symposium on Power Semiconductor Devices, vol. 4, pp.1-5, June 2006
  3. Sang-Hwa Jung, Nam-Sung Jung, Jong-Tae Hwang, and Gyu-Hyeong Cho, "An integrated CMOS DC-DC converter for battery-operated systems," IEEE Power Electronics Specialists Conference, vol. 1, pp .43-47, Aug. 1999
  4. P. Favrat et al., "A high-efficiency CMOS voltage doubler," IEEE JSSC, vol.33, pp.410-416, Mar. 1998
  5. Seong-Ik Cho, Jung-Hwan Lee, Hong-June Park, Gyu-Ho Lim, and Young-Hee Kim, "Two-phase boosted voltage generator for low-voltage DRAMs", IEEE J. Solid-State Circuits, vol. 38, no.10, pp. 1726-1730, Oct. 2003 https://doi.org/10.1109/JSSC.2003.817592
  6. Seong-Ik Cho, Jin-Seok Heo, Sung-Han Yoo, Gyu-Ho Lim, Pan-Bong Ha, Kyeong-Sik Min, and Yong-Hee Kim, "A boosted voltage generator for low-voltage DRAMs", Current Applied Physics, vol. 3, pp. 501-505, Dec. 2003 https://doi.org/10.1016/j.cap.2003.09.003
  7. E. Bayer et al., "A High Efficiency Single-Cell Cascaded Charge Pump Topology," Proc. IEEE Power Electronics Specialists Conference, vol. 1, pp. 290-295, Aug. 2001
  8. Y. H. Kim et al., "A CMOS bandgap reference voltage generator with reduced voltage variation and BJT area", Current Applied Physics, vol.7, issue 1, pp. 92-95, Jan. 2007 https://doi.org/10.1016/j.cap.2006.02.008
  9. K. Y. Sung, "Start-up circuit with wide supply swing voltage range and modified power-up characteristic for bandgap reference voltage generator", The Korean Institute of Maritime Information and Communication Sciences, vol. 11, no. 7, July 2007

Cited by

  1. 탄소 주입 실리콘 산화 절연박막에서 전위장벽과 온도 변화에 대한 상관성 vol.12, pp.12, 2008, https://doi.org/10.6109/jkiice.2008.12.12.2247