• Title/Summary/Keyword: pseudomorphic

Search Result 76, Processing Time 0.034 seconds

A super low noise characteristics of AlGaAs/InGaAs/GaAs pseudomorphic HEMTs fabricated by the improved T-Gate (개선된 T-gate기술로 제작한 초저잡음 AlGaAs/InGaAs/GaAs pseudomorphic HEMT 소자의 특성)

  • 이진희;윤형섭;최상수;박철순;박형무
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.118-123
    • /
    • 1995
  • We have successfully fabricated a super low noise pseudomorphic HEMT(PHEMT) device with AlGaAs/InGaAs/GaAs sturcture by using improved T-Gate which have increased a large gaet cross-sectional area about two times in comparision with those of conventional T-gate processes. The PHEMSTs with 0.15$\mu$m-long and 140$\mu$m-wide gates have eshibited a super low noise characteristics, the noise figure of 0.45dB with associated gain of 10.87dB at 12GHz. The cut-off rewuqncy of the device is 94gHz with a transconductance of 418mS/mm.

  • PDF

Serpentinization of the Ultramafic Rock in the Yesan-Gongju-Cheongyang Area, Korea (충남 예산-공주-청양지역의 초염기성암의 사문암화 작용)

  • 김건영;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.126-138
    • /
    • 1997
  • Serpentinite of the Yesan-Gongju-Cheongyang area has been formed by serpentinization of ultramafic rocks. The ultramafic rock might be composed mainly of oilvine with minor pyroxene and amphibole. Olivine has a considerably restricted chemical compositional ranging from Fo90 to Fo93. Fresh serpentinite containing large amount of oilvine is usually massive in occurrence and dark green to black in color. Serpentine minerals occur not only as major mineral of serpentinite, but also as remnants in the talc ore which was formed from serpentinite. XRD study indicates that antigorie is the most abundant serpentine mineral of the serpentinite. Serpentinite consisting of antigorite usually shows non-pseudomorphic texture, whereas that consisting of lizardite shows pseudomorphic texture. Antigorite is found along the margins or fractures of olivine grains resulting in the formation of network of magnetite which was formed at the time of serpentinization. Lizardite, subordinate constituent mineral of serpentinite, frequently shows pseudomorphic mesh-texture after olivine. The chemical differences between antigorite and lizardite/chrysotile are small, so both minerals are not easily discernible with the electron microprobe. Antigorite occuers as elongate blades, flakes, or plates forming interpenetrating texture to obliterate previous textures. SEM study also shows that most serpentine minerals occur in platy or tabular form rather than in asbestiform. Fractures formed after main serpentinization are observed within the pseudomorphic central olivine grain. Careful observation of the serpentine pseudomorphs gives a great deal of data on the pre-serpentinization nature of the serpentine pseudomorphs gives a great deal of data on the pre-serpentinization nature of the ultramafic rocks. It is inferred that the serpentinization took place after the emplacement of ultramafic body into the relatively wet environment ceased and the cooling intrusive body crossed into the stability field of serpentine. It is inferred that the final pervasive serpentinization took place over a long time, by hydrothermal water supplied through the fracture system produced during emplacement of ultramafic rock.

  • PDF

MOCVD Growth of AlGaAs/InGaAs/GaAs Pseudomorphic Structures and Transport Properties of 2DEG (AlGaAs/InGaAs/GaAs Pseudomorphic 구조의 MOCVD 성장 및 2차원 전자가스의 전송특성)

  • 양계모;서광석;최병두
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.424-432
    • /
    • 1993
  • AlGaAs/InGaAs/GaAs pseudomorphic structures have been grown by atmosheric pressure-MOCVD . The Al incorporation efficiency is constant but slightly exceeds the Ga incorporation during the growth of AlGaAs layers at $650^{\circ}C$ . Meanwhile , the In incorporation efficiency is constant but slightly less than the Ga incorporation in InGAAs layers. InGaAs/GaAs QWs were grown and their optical properties were characterized . $\delta$-doped Al0.24Ga0.76As/In0.16 Ga0.84As p-HEMT structures were successfully grown by MOCVD and their transport properties were characterized by Hall effect and SdH measurements. SdH Measurements at 3.7K show clear magnetoresistance oscillations and plateaus in the quantum Hall effect confirming the existence of a two-dimensional electron gas(2DEG) and a parallel conduction through the GaAs buffer layer. The fabricated $1.5\mu\textrm{m}$gatelength p-HEMTs having p-type GaAs in the buffer layer show a high transconductance of 200 mS/mm and a good pinch-off characteristics.

  • PDF

Structural analysis of $Al_{x}Ga_{1-x}As/In_{y}Ga_{1-y}$As P-HEMTs reverse engineering (Reverse Engineering을 이용한 $Al_{x}Ga_{1-x}As/In_{y}Ga_{1-y}$As P-HEMTs의 구조적 분석)

  • 김병헌;황광철;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.255-258
    • /
    • 2001
  • In this paper, DC and small signal characteristics with different physical parameters are expected for p-HEMTs (Pseudomorphic High Electron Mobility Transistors) with different temperatures ranging from 300K to 623K which are widely used for a low noise and/or ultra high frequency device. A device of 0.2$\times$200 ${\mu}{\textrm}{m}$$^2$dimension having very low noise has been chosen to extract the experimental data. Theoretical prediction has been obtained using a simulaor(HELENA) which needs experimental input data extracted from reverse engineering process. From the results, relation between structural parameters and temperature dependency of electrical characteristics are qualitatively explained to use in the design of descrete and integrated circuits to guarantee the optimal operation of the system.

  • PDF

TEM Observations on the Blue-green Laser Diode (청녹색 레이저 다이오드 구조에 관한 TEM 관찰)

  • Lee, Hwack-Joo;Ryu, Hyun;Park, Hae-Sung;Kim, Tae-Il
    • Applied Microscopy
    • /
    • v.27 no.3
    • /
    • pp.257-263
    • /
    • 1997
  • Microstructural characterizations of II-VI blue laser diodes which consist of quaternary $Zn_{1-x}Mg_xS_ySe_{l-y}$ cladding layer, ternary $ZnS_ySe_{l-y}$ guiding layer and $Zn_{0.8}Cd_{0.2}Se$ quantum well as active layer were carried out using the transmission electron microscope working at 300 kV. Even though the entire structure is pseudomorphic to GaAs substrate, the structure had contained numerous extended stacking faults and dislocations which had created at ZnSe/GaAs interfaces and then further grown to the top of the epilayers. These faults might be expected to cause the degradation and shortening the lifetime of laser devices.

  • PDF

Electrical Characteristics of InAlAs/InGaAs/InAlAs Pseudomorphic High Electron Mobility Transistors under Sub-Bandgap Photonic Excitation

  • Kim, H.T.;Kim, D.M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.145-152
    • /
    • 2003
  • Electrical gate and drain characteristics of double heterostructure InAlAs/InGaAs pseudomorphic HEMTs have been investigated under sub-bandgap photonic excitation ($hv). Drain $(V_{DS})-,{\;}gate($V_{DS})-$, and optical power($P_{opt}$)-dependent variation of the abnormal gate leakage current and associated physical mechanisms in the PHEMTs have been characterized. Peak gate voltage ($V_{GS,P}$) and the onset voltage for the impact ionization ($V_{GS.II}$) have been extracted and empirical model for their dependence on the $V_{DS}$ and $P_{opt} have been proposed. Anomalous gate and drain current, both under dark and under sub-bandgap photonic excitation, have been modeled as a parallel connection of high performance PHEMT with a poor satellite FET as a parasitic channel. Sub-bandgap photonic characterization, as a function of the optical power with $h\nu=0.799eV$, has been comparatively combined with those under dark condition for characterizing the bell-shaped negative humps in the gate current and subthreshold drain leakage under a large drain bias.

Pseudomorphic AlGaAs/InGaAs/GaAs High Electron Mobility Transistors with Super Low Noise Performances of 0.41 dB at 18 GHz

  • Lee, Jin-Hee;Yoon, Hyung-Sup;Park, Byung-Sun;Park, Chul-Soon;Choi, Sang-Soo;Pyun, Kwang-Eui
    • ETRI Journal
    • /
    • v.18 no.3
    • /
    • pp.171-179
    • /
    • 1996
  • Fully passivated low noise AlGaAs/InGaAs/GaAs pseudomorphic (PM) HEMT with wide head T-shaped gates were fabricated by dose split electron beam lithography (DSL). The dimensions of gate head and footprint were optimized by controlling the splitted pattern size, dose, and spaces of each pattern. We obtained stable T-shaped gate of $0.15{\mu}m$ gate length with $1.35{\mu}m-wide$ head. The maximum extrinsic transconductance was 560 mS/mm. The minimum noise figure measured at 18 GHz at $V_{ds}=2V andI_{ds}=17mA$ was 0.41 dB with associated gain of 8.19 dB. At 12 GHz, the minimum noise figure and an associated gain were 0.26 and 10.25 dB, respectively. These noise figures are the lowest values ever reported for GaAs-based HEMTs. These results are attributed to the extremely low gate resistance of wide head T-shaped gate having a ratio of the head to footprint dimensions larger than 9.

  • PDF

High Performance MMIC Star Mixer for Millimeter-wave Applications (밀리미터파 응용을 위한 우수한 성능의 MMIC Star 혼합기)

  • Ryu, Keun-Kwan;Yom, In-Bok;Kim, Sung-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.847-851
    • /
    • 2011
  • In this paper, we reported on a high performance MMIC star mixer for millimeter-wave applications. The star mixer was fabricated using drain-source-connected pseudomorphic high electron mobility transistor (PHEMT) diodes considering the PHEMT MMIC full process on 2 mil thick GaAs substrate. The average conversion loss of 13 dB was measured in the RF frequency range of 81 GHz to 86 GHz at LO frequency of 75 GHz with LO power of 10 dBm. The RF-LO isolation characteristics are greater than 30 dB and the input 1-dB compression are approximately 4 dBm. The total chip size is 0.8 mm ${\times}$ 0.8 mm.