• Title/Summary/Keyword: property T

Search Result 1,533, Processing Time 0.026 seconds

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.

WEYL TYPE-THEOREMS FOR DIRECT SUMS

  • Berkani, Mohammed;Zariouh, Hassan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1027-1040
    • /
    • 2012
  • The aim of this paper is to study the Weyl type-theorems for the orthogonal direct sum $S{\oplus}T$, where S and T are bounded linear operators acting on a Banach space X. Among other results, we prove that if both T and S possesses property ($gb$) and if ${\Pi}(T){\subset}{\sigma}_a(S)$, ${\PI}(S){\subset}{\sigma}_a(T)$, then $S{\oplus}T$ possesses property ($gb$) if and only if ${\sigma}_{SBF^-_+}(S{\oplus}T)={\sigma}_{SBF^-_+}(S){\cup}{\sigma}_{SBF^-_+}(T)$. Moreover, we prove that if T and S both satisfies generalized Browder's theorem, then $S{\oplus}T$ satis es generalized Browder's theorem if and only if ${\sigma}_{BW}(S{\oplus}T)={\sigma}_{BW}(S){\cup}{\sigma}_{BW}(T)$.

ON LOCAL SPECTRAL PROPERTIES OF RIESZ OPERATORS

  • JONG-KWANG YOO
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.273-286
    • /
    • 2023
  • In this paper we show that if T ∈ L(X) and S ∈ L(X) is a Riesz operator commuting with T and XS(F) ∈ Lat(S), where F = {0} or F ⊆ ℂ ⧵ {0} is closed then T|XS(F) and T|XT(F) + S|XS(F) share the local spectral properties such as SVEP, Dunford's property (C), Bishop's property (𝛽), decomopsition property (𝛿) and decomposability. As a corollary, if T ∈ L(X) and Q ∈ L(X) is a quasinilpotent operator commuting with T then T is Riesz if and only if T + Q is Riesz. We also study some spectral properties of Riesz operators acting on Banach spaces. We show that if T, S ∈ L(X) such that TS = ST, and Y ∈ Lat(S) is a hyperinvarinat subspace of X for which 𝜎(S|Y ) = {0} then 𝜎*(T|Y + S|Y ) = 𝜎*(T|Y ) for 𝜎* ∈ {𝜎, 𝜎loc, 𝜎sur, 𝜎ap}. Finally, we show that if T ∈ L(X) and S ∈ L(Y ) on the Banach spaces X and Y and T is similar to S then T is Riesz if and only if S is Riesz.

INVERSE SHADOWING PROPERTY OF MORSE-SMALE SYSTEMS

  • Choi, Taeyoung;Lee, Keonhee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.61-73
    • /
    • 2002
  • We consider the inverse shadowing property of a dynamical system which is an "inverse" form of the shadowing property of the system. In particular, we show that every Morse-Smale system f on a compact smooth manifold has the inverse shadowing property with respect to the class $\mathcal{T}_h(f)$ of continuous methods generated by homeomorphisms, but the system f does not have the inverse\mathrm{T} shadowing property with respect to the class $\mathcal{T}_c(f)$ of continuous methods.

  • PDF

INEQUALITIES OF OPERATOR POWERS

  • Lee, Eun-Young;Lee, Mi-Ryeong;Park, Hae-Yung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Duggal-Jeon-Kubrusly([2]) introduced Hilbert space operator T satisfying property ${\mid}T{\mid}^2{\leq}{\mid}T^2{\mid}$, where ${\mid}T{\mid}=(T^*T)^{1/2}$. In this paper we extend this property to general version, namely property B(n). In addition, we construct examples which distinguish the classes of operators with property B(n) for each $n{\in}\mathbb{N}$.

  • PDF

Weyl Type Theorems for Unbounded Hyponormal Operators

  • GUPTA, ANURADHA;MAMTANI, KARUNA
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.531-540
    • /
    • 2015
  • If T is an unbounded hyponormal operator on an infinite dimensional complex Hilbert space H with ${\rho}(T){\neq}{\phi}$, then it is shown that T satisfies Weyl's theorem, generalized Weyl's theorem, Browder's theorem and generalized Browder's theorem. The equivalence of generalized Weyl's theorem with generalized Browder's theorem, property (gw) with property (gb) and property (w) with property (b) have also been established. It is also shown that a-Browder's theorem holds for T as well as its adjoint $T^*$.

PROPERTY T FOR FINITE VON NEUMANN ALGEBRAS

  • Boo, Deok-Hoon;Park, Chun-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.117-126
    • /
    • 1997
  • We find more simple forms of property T for von Neumann algebras which are finite direct sum of $II_1$ factors.

  • PDF

A GENERALIZATION OF THE NILPOTENT SPACE AND ITS APPLICATION

  • Han, Sang-Eon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.787-795
    • /
    • 2001
  • For the generalized nilpotent spaces, e.g. the locally nilpotent space, the residually locally nilpotent space and the space satisfying the condition ($T^{*}$) or ($T^{**}$), we find the pullback property of them. Furthermore we investigate some fiber properties of the space satisfying the condition ($T^{*}$) or ($T^{**}$), especially locally nilpotent space.

  • PDF

LOCAL HOLDER PROPERTY AND ASYMPTOTIC SELF-SIMILAR PROCESS

  • Kim, Joo-Mok
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.385-393
    • /
    • 2003
  • Let Y(t) be a stochastic integral process represented by Brownian motion. We show that YHt (t) is continuous in t with probability one for Molder function Ht of exponent ${\beta}$ and finally we derive asymptotic self-similar process YM (t) which converges to Yw (t).

BISHOP'S PROPERTY (${\beta}$) AND SPECTRAL INCLUSIONS ON BANACH SPACES

  • Yoo, Jong-Kwang;Oh, Heung-Joon
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.459-468
    • /
    • 2011
  • Let T ${\in}$ L(X), S ${\in}$ L(Y), A ${\in}$ L(X, Y) and B ${\in}$ L(Y, X) such that SA = AT, TB = BS, AB = S and BA = T. Then S and T shares the same local spectral properties SVEP, Bishop's property (${\beta}$), property $({\beta})_{\epsilon}$, property (${\delta}$) and and subscalarity. Moreover, the operators ${\lambda}I$ - T and ${\lambda}I$ - S have many basic operator properties in common.