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ON LOCAL SPECTRAL PROPERTIES OF RIESZ OPERATORS

JONG-KWANG YOO

Abstract. In this paper we show that if T ∈ L(X) and S ∈ L(X) is

a Riesz operator commuting with T and XS(F ) ∈ Lat(S), where F =

{0} or F ⊆ C \ {0} is closed then T |XS(F ) and T |XT (F ) + S|XS(F )
share the local spectral properties such as SVEP, Dunford’s property (C),

Bishop’s property (β), decomopsition property (δ) and decomposability.

As a corollary, if T ∈ L(X) and Q ∈ L(X) is a quasinilpotent operator
commuting with T then T is Riesz if and only if T + Q is Riesz. We

also study some spectral properties of Riesz operators acting on Banach
spaces. We show that if T, S ∈ L(X) such that TS = ST, and Y ∈
Lat(S) is a hyperinvarinat subspace of X for which σ(S|Y ) = {0} then

σ∗(T |Y + S|Y ) = σ∗(T |Y ) for σ∗ ∈ {σ, σloc, σsur, σap}. Finally, we show
that if T ∈ L(X) and S ∈ L(Y ) on the Banach spaces X and Y and T is

similar to S then T is Riesz if and only if S is Riesz.
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1. Introduction

Throughout this paper, let L(X,Y ) denote the set of all bounded linear op-
erators from Banach space X to Banach space Y, and L(X) := L(X,X). As
usual, given T ∈ L(X), let ker(T ) and T (X) stand for the kernel and range of
T, the spectrum of T is denoted by σ(T ) and the spectral radius of T is de-
noted by r(T ). For an operator T ∈ L(X), we denote by Lat(T ) the lattice of
all closed T−invariant subspaces of X and M ∈ Lat(T ), let T |M ∈ L(M) be
the restriction of T to M. We say that a linear subspace M of X is said to be
T−hyperinavriant if SM ⊆ M for every bounded linear operator S ∈ L(X) that
commutes with T.

Received February 21, 2022. Revised August 3, 2022. Accepted January 6, 2023.

© 2023 KSCAM.

273



274 Jong-Kwang Yoo

Definition 1.1. An operator T ∈ L(X) on a complex Banach space X is a Riesz
operator if for each λ ∈ C \ {0}, the spaces ker(T − λI) and X/(T − λI)(X) are
both of finite dimension.

It is well known that T ∈ L(X) is a Riesz operator if and only if T − λI is a
Fredholm operator for every λ ∈ C\{0}, i.e. dim ker(T−λI) < ∞ and codim(T−
λI)(X) < ∞. The spectrum σ(T ) of a Riesz operator is at most countable
and has no non-zero cluster point. Furthermore, each non-zero element of the
spectrum is an eigenvalue. Moreover, the spectral subspaces associated with
non-zero elements of the spectrum are finite dimensional. The classical Riesz-
Schauder theory of compact operators establishes that every compact operator
is Riesz. Examples of Riesz operators are quasinilpotent operators and compact
operators, see [21].

In this note we show that if T ∈ L(X) and S ∈ L(X) is a Riesz operator
commuting with T and XS(F ) ∈ Lat(S), where F = {0} or F ⊆ C \ {0} is
closed then T |XS(F ) and T |XT (F )+S|XS(F ) share the local spectral properties
such as SVEP, Dunford’s property (C), Bishop’s property (β), decomopsition
property (δ) and decomposability. We also study spectral properties of Riesz
operators.

The following localized version of single valued extension property was intro-
duced by Finch [17]. The single valued extension property has now developed
into one of the major tools in the local spectral theory and Fredholm theory for
operators on Banach spaces, see more details [1], [2], [23], [27], [28].

Definition 1.2. An operator T ∈ L(X) is said to have the single valued ex-
tension property at a point λ ∈ C (for brevity, SVEP at λ) provided that, for
every open disc U ⊆ C centered at λ, the only analytic function f : U → X that
satisfies the equation

(µI − T )f(µ) = 0 for all µ ∈ U

is the constant function f ≡ 0 on U. Moreover, T is said to have SVEP if an
operator T ∈ L(X) has SVEP at every point λ ∈ C.

It is clear that T ∈ L(X) has SVEP at every point of the resolvent set ρ(T ).
Moreover, from the identity theorem for analytic function it is easily seen that
T ∈ L(X) has SVEP at every point of the boundary ∂σ(T ) of the spectrum
σ(T ). In particular, T ∈ L(X) has SVEP at every isolated point of σ(T ).

For T ∈ L(X), the local resolvent set ρT (x) of T at the point x ∈ X is defined
as the set of all λ ∈ C for which there exist an open neighborhood U of λ and
an analytic function f : U → X such that

(µI − T )f(µ) = x for all µ ∈ U.
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The local spectrum σT (x) of T at x is then defined as σT (x) = C \ ρT (x). The
local analytic solutions occuring in the definition of the local resolvent set will
be unique for all x ∈ X if and only if T has SVEP. It is clear that σT (x) is a
closed subset of σ(T ) and it may be empty. For every subset F of C, we define
the local spectral subspace of T associated with F is the set

XT (F ) = {x ∈ X : σT (x) ⊆ F}.
It is clear from the definition that XT (F ) is a hyperinvariant subspace of X, but
not always closed. An operator T ∈ L(X) is said to have Dunford’s property
(C) (for brevity, property (C)) if the local spectral subspace XT (F ) is closed for
every closed subset F of C.

For every closed subset F of C, the glocal spectral subspace XT (F ) is defined
as the set of all x ∈ X that there exists an analytic function f : C \ F → X
which satisfies

(λI − T )f(λ) = x for all λ ∈ C \ F.
Clearly, XT (F ) is a hyperinvariant subspace of X and XT (F ) ⊆ XT (F ). More-
over, XT (F ) = XT (F ) holds for all closed subsets F of C precisely when T
has SVEP, see Proposition 3.3.2 of [23]. Recall that an operator T ∈ L(X)
is said to have the decomposition property (δ) (for brevity, property (δ)) if,
X = XT (U) + XT (V ) for every open cover {U, V } of C.

Let O(U,X) denote the Frécht algebra of all X−valued analytic functions on
the open subset U ⊆ C endowed with uniform convergence on compact subsets
of U. An operator T ∈ L(X) is said to have Bishop’s property (β) (for brevity,
property (β)) if for every open subset U of C and for any sequence {fn}∞n=1 ⊆
O(U,X), limn→∞(µI − T )fn(µ) = 0 in O(U,X) implies limn→∞ fn(µ) = 0
in O(U,X). Note that the property (β) implies that T has SVEP, while the
property (δ) implies SVEP for T ∗, see [1], [7], [8]. We say that an operator
T ∈ L(X) is said to be decomposable if, for every open cover {U, V } of C, there
exist Y,Z ∈ Lat(T ) for which

X = Y + Z, σ(T |Y ) ⊆ U and σ(T |Z) ⊆ V.

Examples of decomposable operators are normal operators, generalized scalar
operators and spectral operators. Also, operators with totally disconnected spec-
trum are decomposable by the Riesz functional calculus. In particular, compact
and algebraic operators are decomposable, see [1], [19], [23]. It is clear that every
decomposable operator has property (δ). It is well known that that T ∈ L(X)
has property (β) if and only if its adjoint T ∗ ∈ L(X∗) on the topological dual
space X∗ has property (δ), and the same equivalence holds when the roles of (β)
and (δ) are interchanged. It is well known that T is decomposable if and only if
T satisfies both properties (β) and (δ), see [8] and [23].

Lemma 1.3. Let T ∈ L(X) and λ ∈ C, and let S = T +λI. Then the following
assertions hold:
(a) T has SVEP if and only if S has SVEP.
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(b) T has property (C) if and only if S has property (C).
(c) T has property (β) if and only if S has property (β).
(d) T has property (δ) if and only if S has property (δ).
(e) T is decomposable if and only if S is decomposable.

Proof. (a) Suppose that T has SVEP. Let µ0 ∈ C be arbitrary and let U be an
open neighborhood of µ0. Assume that f : U → X is an analytic function such
that (µI − S)f(µ) = 0 for all µ ∈ U. Then U + λ is a neighborhood of µ0 + λ,
where U + λ = {µ+ λ : µ ∈ U}. We define g : U + λ → X by

g(ζ) := f(ζ − λ) for all ζ ∈ U + λ.

Then clearly g is analytic and (ζI − T )g(ζ) = 0 for all ζ ∈ U + λ. Since T
has SVEP, we have g ≡ 0 on U + λ and hence f ≡ 0 on U, so that S has
SVEP. Conversely, suppose that S has SVEP. Let ξ0 ∈ C and let V be an open
neighborhood of ξ0. Assume that h : V → X is an analytic function such that
(µI − T )h(µ) = 0 for all µ ∈ V. Then clearly h(ω − λ) is ananlytic and

(ωI − S)h(ω − λ) = 0 for all ω ∈ V + λ.

Since S has SVEP, we have h ≡ 0 on V and hence T has SVEP.
(b) We first prove that XS(F ) = XT (F−λ) for every subset F of C. It suffices

to show that σS(x) ⊆ F if and only if σT (x) ⊆ F − λ. Suppose that σS(x) ⊆ F.
If µ /∈ F − λ then µ + λ /∈ F and hence µ + λ ∈ ρS(x). Thus there exist a
neighborhood U of µ+ λ and an analytic function f : U → X satisfying

(ωI − S)f(ω) = x for all ω ∈ U.

We define g : U − λ → X by

g(ζ) := f(ζ + λ) for all ζ ∈ U − λ.

Then clearly g is analytic satisfying (ζI − T )g(ζ) = x for all ζ ∈ U − λ, so
that µ ∈ ρT (x). We conclude that σT (x) ⊆ F − λ. Conversely, suppose that
σT (x) ⊆ F − λ. If µ /∈ F then µ − λ ∈ ρT (x). Thus there exist a neighborhood
W of µ − λ and an analytic function h : W → X satisfying (ωI − T )h(ω) = x
for all ω ∈ W. Then W +λ is a neighborhood of µ. We define k : W +λ → X by

k(ζ) := h(ζ − λ) for all ζ ∈ W + λ.

Then k is analytic such that (ζI−S)k(ζ) = x for all ζ ∈ W+λ, so that µ ∈ ρS(x)
and hence σS(x) ⊆ F. We conclude that XS(F ) = XT (F − λ) for all F ⊆ C.

(c) Suppose that T has property (β). Let U be an open subset of C, and
let {fn}∞n=1 ⊆ O(U,X) such that limn→∞(µI − S)fn(µ) = 0 in O(U,X). We
define gn : U − λ → X by gn(ζ) := fn(ζ + λ) for all ζ ∈ U − λ. Then clearly
{gn} ⊆ O(U − λ,X) and

lim
n→∞

(ζI − T )gn(ζ) = 0 in O(U − λ,X).

Since T has property (β), we have limn→∞ gn(ζ) = 0 in O(U −λ,X), and hence
limn→∞ fn(µ) = 0 in O(U,X). This shows that S has property (β). The reverse
implication is similar.
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(d) It is well known that (β) and (δ) are complete dual. This assertion follows
from (c) by duality.

(e) It is well known that an operator is decomposable if and only if it has
both properties (β) and (δ). This assertion follows from (c) and (d). □

It is clear that if T ∈ L(X) and S ∈ L(Y ) then σ(T ⊕ S) = σ(T ) ∪ σ(S),
where X ⊕ Y = {x⊕ y : x ∈ X, y ∈ Y } and ∥x⊕ y∥ = (∥x∥2 + ∥y∥2)1/2.

Lemma 1.4. Let T ∈ L(X) and S ∈ L(Y ) on the Banach spaces X and Y.
Then T ⊕ S ∈ L(X ⊕ Y ) has SVEP if and only if both T and S have SVEP.
Moreover, σT⊕S(x⊕ y) = σT (x) ∪ σS(y) for all x⊕ y ∈ X ⊕ Y.

Proof. Suppose that T ⊕S has SVEP. Let µ ∈ C and let U be an arbitrary open
neighborhood of µ. Assume that f : U → X is an analytic function such that
(µI − T )f(λ) = 0 for all λ ∈ U, and g : U → Y is an analytic function such that
(λI − S)g(λ) = 0 for all λ ∈ U. Then we have

(λI − (T ⊕ S))(f(λ)⊕ g(λ)) = (λI − T )f(λ) + (λI − S)g(λ) = 0

on U. It follows from the SVEP of T ⊕ S that

f ⊕ g ≡ 0 on U.

Thus f ≡ 0 and g ≡ 0 on U, and hence both T and S have the SVEP. Conversely,
suppose that T and S have the SVEP. Let µ ∈ C and let V be an arbitrary open
neighborhood of µ. If h = f ⊕ g : V → X ⊕ Y is an analytic function such that

(λI − (T ⊕ S))h(λ) = 0 on V.

Then clearly, (λI − T )f(λ) = 0 and (λI − S)g(λ) = 0 on V. By the SVEP of T
and S, we have f ≡ 0 and g ≡ 0 on V. Hence T ⊕ S has SVEP.

Finally, we show that σT⊕S(x ⊕ y) = σT (x) ∪ σS(y) for all x ⊕ y ∈ X ⊕ Y.
Let λ /∈ σT⊕S(x ⊕ y). Then there exist a neighborhood N of λ and an analytic
function k = f ⊕ g : N → X ⊕ Y such that

(λI − T )f(λ)⊕ (λI − S)g(λ) = (λI − (T ⊕ S))k(λ) = x⊕ y

for all λ ∈ N. Thus (λI − T )f(λ) = x and (λI − S)g(λ) = y for all λ ∈ N, and
hence λ ∈ ρT (x) ∩ ρS(y). It follows that σT (x) ∪ σS(y) ⊆ σT⊕S(x⊕ y).

On the other hand, if λ ∈ ρT (x) ∩ ρS(y) then there exist a neighborhood W
of λ and an analytic function f : W → X such that (λI − T )f(λ) = x for all
λ ∈ W, and an analytic function g : W → Y such that (λI − S)g(λ) = y for all
λ ∈ W. We define f ⊕ g : W → X ⊕ Y by

(f ⊕ g)(λ) = f(λ)⊕ g(λ)

for all λ ∈ W. Then clearly, f ⊕ g is analytic and

(λI − (T ⊕ S))(f ⊕ g)(λ) = (λI − T )f(λ)⊕ (λI − S)g(λ) = x⊕ y
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for all λ ∈ W and hence λ ∈ ρT⊕S(x⊕ y). It follows that

σT⊕S(x⊕ y) ⊆ σT (x) ∪ σS(y).

□

Lemma 1.5. Let T ∈ L(X) and S ∈ L(Y ) on the Banach spaces X and Y.
Then T ⊕ S ∈ L(X ⊕ Y ) has property (C) if and only if both T and S have
properety (C).

Proof. By Lemma 1.4, σT⊕S(x ⊕ y) = σT (x) ∪ σS(y) for all x ⊕ y ∈ X ⊕ Y. It
suffices to show that (X ⊕ Y )T⊕S(F ) = XT (F )⊕ YS(F ) for every closed subset
F of C. For every closed subset F of C,

x⊕ y ∈ (X ⊕ Y )T⊕S(F ) ⇐⇒ σT⊕S(x⊕ y) = σT (x) ∪ σS(y) ⊆ F

⇐⇒ σT (x) ⊆ F and σS(y) ⊆ F

⇐⇒ x ∈ XT (F ) and y ∈ YS(F ).

It follows that (X⊕Y )T⊕S(F ) = XT (F )⊕YS(F ) for every closed subset F of C.
Suppose that T and S have property (C). Then for every closed subset F of C,
XT (F ) and YS(F ) are closed, and hence (X⊕Y )T⊕S(F ) is closed. It follows that
T ⊕ S has property (C). Conversely, suppose that T ⊕ S has property (C). By
Proposition 1.2.21 of [23], it then follows that T and S have property (C). □

Lemma 1.6. Let T ∈ L(X) and S ∈ L(Y ) on the Banach spaces X and Y.
Then T ⊕ S ∈ L(X ⊕ Y ) has property (β) if and only if both T and S have
property (β). Dually, T ⊕ S ∈ L(X ⊕ Y ) has property (δ) if and only if both T
and S have that property.

Proof. Suppose that both T and S have property (β). Let P1 : X ⊕ Y → X be
the projection and P2 : X ⊕ Y → Y be the projection. Let U be an arbitrary
open subset of C and let {fn}∞n=1 ⊆ O(U,X ⊕ Y ) be any sequence such that

(λI − T ⊕ S)fn(λ) = 0 in O(U,X ⊕ Y ).

Then clearly, {P1fn} ⊆ O(U,X) and {P2fn} ⊆ O(U, Y ) satisfying

(λI − T )P1fn(λ) = 0 in O(U,X) and (λI − S)P2fn(λ) = 0 in O(U, Y ).

Since T and S have property (β), we have P1fn ≡ 0 in O(U,X) and P2fn ≡ 0
in O(U, Y ). It follows that fn = P1fn +P2fn ≡ 0 on O(U,X ⊕ Y ). Hence T ⊕ S
has property (β).

Conversely, suppose that T ⊕S has property (β). Let V be an arbitrary open
subset of C and let {fn}∞n=1 ⊆ O(V,X) and {gn}∞n=1 ⊆ O(V, Y ) such that

(λI − T )fn(λ) = 0 in O(V,X) and (λI − S)gn(λ) = 0 in O(V, Y ).

We define fn ⊕ gn : V → X ⊕ Y by

(fn ⊕ gn)(λ) = fn(λ)⊕ gn(λ) for all λ ∈ V.



On local spectral properties of Riesz operators 279

Then {fn ⊕ gn}∞n=1 ⊆ O(V,X ⊕ Y ) and

(λI − (T ⊕ S))(fn(λ)⊕ gn(λ)) = 0 in U(V,X ⊕ Y ).

Since T ⊕ S has property (β), we obtain

fn ⊕ gn ≡ 0 in O(V,X ⊕ Y ).

It follows that fn ≡ 0 in O(V,X) and gn ≡ 0 in O(V, Y ). We conclude that T
and S have property (β). Finally, suppose that T ⊕ S has property (δ). Then
(T ⊕S)∗ = T ∗⊕S∗ has property (β), and hence T ∗ and S∗ have property (β). It
follows from Theorem 2.5.18 of [23] that T and S have property (δ). The reverse
implication is similar. □

The surjective spectrum σsur(T ) of T ∈ L(X) is defined as the set of all λ ∈ C
such that (T − λI)(X) ̸= X. It is clear that σsur(T ) is a compact subset of C
that contains the boundary of σ(T ). The approximate point spectrum σap(T ) of
T is defined as the set of all λ ∈ C such that T − λI is not bounded below. It
is well known that σsur(T ) = σap(T

∗) and σap(T ) = σsur(T
∗). For T ∈ L(X),

the localizable spectrum σloc(T ) of T will be defined as the set of all λ ∈ C such
that XT (V ) ̸= {0} for each open neighborhood V of λ. It is well known that
σloc(T ) is a closed subset of σ(T ) and that σloc(T ) contains the point spectrum
and is included in the aproximate point spectrum of T, see [18]. As shown by
Eschmeier and Prunaru [18], the localizable spectrum plays an important role in
the theory of invariant subspaces; see also [18] and [24]. The following property
is stable under commuting quasinilpotent perturbations: SVEP, property (C),
property (β), property (δ), decomposability.

Theorem 1.7. Let T ∈ L(X) and Q ∈ L(X) be a quasinilpotent operator
commuting with T. Then σT (x) = σT+Q(x) for all x ∈ X. Moreover, σ∗(T+Q) =
σ∗(T ) for σ∗ ∈ {σ, σloc, σsur, σap}. Furthermore, the following assertions hold:
(a) T has SVEP if and only if T +Q has SVEP.
(b) T has property (C) if and only if T +Q has property (C).
(c) T has property (β) if and only if T +Q has property (β).
(d) T has property (δ) if and only if T +Q has property (δ).
(e) T is decomposable if and only if T +Q is decomposable.

Proof. Theorem 2.2, Corollary 2.4, Corollary 2.6, Corollary 2.7, Corollary 2.8 of
[30]. □

Proposition 1.8. Let T ∈ L(X) be a Riesz operator on a complex Banach space
X. Suppose that U is any open subset of C such that σ(T )∩U ̸= ϕ then there is
a nonzero Y ∈ Lat(T ) such that σ(T |Y ) ⊆ U.
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Proof. Let V be another open subset of C such that σ(T ) ̸⊆ V and {U, V } be
an open covering of C. By Theorem 1.4.7 of [23], T is decomposable. Thus there
exist Y,Z ∈ Lat(T ) satisfying

X = Y + Z, σ(T |Y ) ⊆ U and σ(T |Z) ⊆ V.

If Y = {0} then σ(T |Z) = σ(T ) ⊆ V, which is impossible by the choice of V. It
follows that {0} ≠ Y ∈ Lat(T ) and σ(T |Y ) ⊆ U.. □

Corollary 1.9. Let T ∈ L(X) be a Riesz operator on a complex Banach space
X. Then σ(T ) = σap(T ) = σsur(T ).

Proof. Suppose that σ(T ) ̸= σap(T ). Let U = C \ σap(T ). Then U is an open
subset of C and U ∩σ(T ) ̸= ϕ. Thus there exist Y ∈ Lat(T ) such that σ(T |Y ) ⊂
U by Proposition 1.8. It is clear that ∂σ(T |Y ) is nonempty. Thus there exists
µ ∈ U such that

µ ∈ ∂σ(T |Y ) ⊆ σap(T |Y ) ⊆ σap(T ).

This is a contradiction, we have σ(T ) = σap(T ). It is clear that

σ(T ) = σ(T ∗) = σap(T
∗) = σsur(T ).

□

2. Main result

Let M be a subset of a Banach space X. The annihilator of M is the closed
subspace of X∗ defined by M⊥ := {f ∈ X∗ : f(x) = 0 for every x ∈ X}, while
the pre-annihilator of a subset W of X∗ is the closed subspace of X defined by

⊥W := {x ∈ X : f(x) = 0 for every f ∈ W}.
It is clear that if M is closed then ⊥(M⊥) = M.

Theorem 2.1. Let T, S ∈ L(X), where S is a Riesz operator such that TS = ST.
Let Y ∈ Lat(S) be a hyperinvarinat subspace of X for which σ(S) = σ(S|Y ),
and let T1 := T |Y ∈ L(Y ) and S1 := S|Y ∈ L(Y ). If T1 has SVEP then T1 + S1

has SVEP.

Proof. We claim that S1 is a Riesz operator. By Theorem 3.17 of [11], it suffices
to show that each spectral point λ ̸= 0 is isolated and the spectral projection
associated with {λ} is finite-dimensional. We first show that (λI − S)(Y ) = Y
for all λ ∈ ρ(S). It is clear that (λI−S)(Y ) ⊆ Y. Let λ ∈ C such that r(S) < |λ|
and let Rλ := (λI − S)−1. Obviously, Rλ =

∑∞
n=0 λ

−n−1Sn. It follows that
Rλ(Y ) ⊆ Y. For every f ∈ Y ⊥ and y ∈ Y, we define g : ρ(T ) → C by

g(λ) = f(Rλy) for all λ ∈ ρ(T ).
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Then g is analytic and vanishs outside the spectral disk of S. Since ρ(S) is
connected, it follows from the identity theorem that f(Rλy) = 0 for all λ ∈ ρ(S).
Therefore Rλy ∈ Y ⊥⊥ = Y and so y = (λI − S)Rλy ∈ (λI − S)(Y ). Hence
Y ⊆ (λI − S)(Y ), and we have (λI − S)(Y ) = Y for all λ ∈ ρ(S). Obviously,
λI−S is injective for all λ ∈ ρ(S). Thus ρ(S) ⊆ ρ(S1), and hence σ(S1) ⊆ σ(S).
Let µ be an isolated spectral point of S, and hence an isolated point of σ(S1).
Let P be the spectral projection associated with {µ} and S, and let P1 be the
spectral projection associated with {µ} and S1. Then Px = P1x for all x ∈ Y.
Hence P1 is the restriction of P to Y. Since P is finite-dimensional, P1 is finite-
dimensional. We conclude that S1 is also Riesz. Since T1 has SVEP, it follows
from Theorem 0.3 of [2] that T1 + S1 has SVEP. □

Let T, S ∈ L(X) such that TS = ST, and let Y ∈ Lat(S) be a hyperinvarinat
subspace of X for which σ(S|Y ) = {0}. Then cleraly, S|Y is a quasinilpotent
operator. We have the following.

Theorem 2.2. Let T, S ∈ L(X) such that TS = ST, and let Y ∈ Lat(S) be a
hyperinvarinat subspace of X for which σ(S|Y ) = {0}. Let T1 := T |Y ∈ L(Y )
and S1 := S|Y ∈ L(Y ). Then the following assertions hold:
(a) T1 has SVEP if and only if so does T1 + S1.
(b) T1 has property (C) if and only if so does T1 + S1.
(c) T1 has property (β) if and only if so does T1 + S1.
(d) T1 has property (δ) if and only if so does T1 + S1.
(e) T1 is decomposable if and only if so does T1 + S1.

Proof. Note that S1 is quasinilpotent and T1S1 = S1T1. So Theorem 1.7 applies.
□

Corollary 2.3. Let T, S ∈ L(X) such that TS = ST, and let Y ∈ Lat(S) be a
hyperinvarinat subspace of X for which σ(S|Y ) = {0}. Let T1 := T |Y ∈ L(Y )
and S1 := S|Y ∈ L(Y ). Then σT1+S1

(x) = σT1
(x) for all x ∈ Y. Moreover,

σ∗(T1 + S1) = σ∗(T1) for σ∗ ∈ {σ, σloc, σsur, σap}.

Theorem 2.4. ([23]) Let T ∈ L(X) be an operator on a Banach space X. Then
T is a Riesz operator if and only if T is decomposable and all the spaces XT (F ),
where F ⊆ C \ {0} is closed, are finite dimensional.

Corollary 2.5. Let T ∈ L(X) and Q ∈ L(X) be a quasinilpotent operator
commuting with T. Then T is a Riesz operator if and only if so does T +Q.

Proof. By Theorem 1.7, σT (x) = σT+Q(x) for all x ∈ X, we conclude that
XT (F ) = XT+Q(F ) for all closed F ⊆ C \ F. So Theorem 1.7 and Theorem 2.2
applies. □
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Theorem 2.6. Let T ∈ L(X) be a Riesz operator on a complex Banach space
X. Suppose that 0 is an isolated point of the spectrum σ(T ) then T is the sum
of an invertible and quasinilpotent operator.

Proof. Assume that 0 is an isolated point of the spectrum σ(T ). Then there
is a positive integer n ∈ N such that {λ ∈ C : 0 < |λ| < 1

n} ⊆ ρ(T ). Let

U := {λ ∈ C : 1
n+1 < |λ|} and V := {λ ∈ C : |λ| < 1

n}. Then {U, V } be
an open cover of C. By Thorem 2.4, T is decomposable, and hence there exist
Y, Z ∈ Lat(T ) such that

X = Y + Z, σ(T |Y ) ⊆ U and σ(T |Z) ⊆ V.

Let A = T |Y and B = T |Z. Then clearly, T = A+B. Since 0 /∈ U and σ(A) ⊆ U,
we have 0 ∈ ρ(A) and hence A is invertible. Since σ(B) ⊆ {λ ∈ C : |λ| < 1

n}, we
obtain σ(B) = {0}. It follows that B is quasinilpotent. □

Theorem 2.7. Let T ∈ L(X) and S ∈ L(Y ) on the Banach spaces X and Y. If
T is similar to S then T is a Riesz operator if and only if S is a Riesz operator.

Proof. Let A ∈ L(X,Y ) be a bounded invertible operator for which AT = SA.
Then clearly, σ(T ) = σ(S) and T is decomposable by Theorem 2.4. We first
show that S is decomposable. Let {U1, U2} be an open covering of C. Then
there exist X1, X2 ∈ Lat(T ) such that X = X1 + X2 and σ(T |Xi) ⊆ Ui for
i = 1, 2. Let Yi = AXi for i = 1, 2. Then clearly Yi ∈ Lat(S) and Y = Y1 + Y2.
Since S|Yi is similar to T |Xi under the invertible restrictin A|Xi, We have

σ(S|Yi) = σ(T |Xi) ⊆ Ui for i = 1, 2.

It follows that S is decomposable. Finally, we show that all the spces YS(F ),
where F ⊆ C \ {0} is closed, are finite dimensional. Since T is Riesz, XT (F ) is
closed and dimXT (F ) < ∞. By Proposition 1.2.17 of [23], we have the inclusions

σS(Ax) ⊆ σT (x) for all x ∈ X and σT (A
−1y) ⊆ σS(y) for all y ∈ Y.

It suffices to show that AXT (F ) = YS(F ). If y ∈ YS(F ) then

σT (A
−1y) ⊆ σS(y) ⊆ F,

and therefore Ys(F ) ⊆ AXT (F ). On the other hand, if y = Ax for some x ∈
XT (F ) then

σS(Ax) ⊆ σT (x) ⊆ F

and so y = Ax ∈ Ys(F ). This implies that AXT (F ) ⊆ YS(F ) and hence
AXT (F ) = YS(F ). Since dimXT (F ) < ∞, we obtain dimYS(F ) < ∞. We con-
clude that S is a Riesz operator by Theorem 2.4. The reverse implication is
similar. □

It is well known that for every F ⊆ C, XT (F ) is a hyperinvariant subspace of
X. The spectrum σ(S) of Riesz operator is at most countable and has no non-zero
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cluster point. Let T ∈ L(X) and S ∈ L(X) be a quasinilpotent operator com-
muting with T, and let Y := XS({0}). Then, by Proposition 1.2.16 and Proposi-
tion 1.2.20 of [23], Y is a hyperinvariant subspace of X and σ(S|XS({0})) ⊆ {0}
and hence X = XS({0}). We have the following.

Theorem 2.8. Let T ∈ L(X) and let S ∈ L(X) be a Riesz operator commuting
with T. Let T1 := T |XS({0}) and S1 := S|XS({0}). Then the following assertions
are hold:
(a) T1 has SVEP if and only if so does T1 + S1.
(b) T1 has property (C) if and only if so does T1 + S1.
(c) T1 has property (β) if and only if so does T1 + S1.
(d) T1 has property (δ) if and only if so does T1 + S1.
(e) T1 is decomposable if and only if so does T1 + S1.

Proof. It suffices to show that S1 is a quasinilpotent operator commuting with
T1. Clearly, T1S1 = S1T1. It follows from Theorem 2.4 that S is decomposable
and hence S has property (C). By Proposition 1.2.16 of [23], XS({0}) is a closed
hyperinvariant subspace of X, and hence, by Proposition 1.2.20 of [23],

σ(S1) = σ(S|XS({0})) ⊆ {0}.

We infer that S1 is a quasinilpotent operator commuting with T1. So Theorem
1.7 applies. □

Theorem 2.9. Let T ∈ L(X) and let S ∈ L(X) be a Riesz operator commuting
with T. Let F ⊆ C\{0} be a closed, and let T1 := T |XS(F ) and S1 := S|XS(F ).
Then the following assertions are hold:
(a) If T1 has SVEP then T1 + S1 has SVEP.
(b) If T1 has property (C) then T1 + S1 has propety (C).
(c) If T1 has property (β) then T1 + S1 has property (β).
(d) If T1 has property (δ) then T1 + S1 has property (δ).
(e) If T1 is decomposable then T1 + S1 is decomposable.

Proof. It follows from Theorem 2.4 that S is decomposable and hence S has prop-
erty (C). By Proposition 1.2.16 of [23],XS(F ) is a closed hyperinvariant subspace
of X, and hence, by Proposition 1.4.7 of [23], XS(F ) is finite-dimensional. Thus
σ(S1) is finite, say σ(S1) = {µ1, µ2, · · · , µn}. For i = 1, 2, · · · , n let Pi ∈ L(X)
denote the spectral projection associated with S1 and with the spectral set
{µi}, and let Xi := Pi(X). From standard spectral theory it is known that
P1 + P2 + · · · + Pn = I, that X1, X2, · · · , Xn are closed linear subspaces of X
which are each invariant under both T1 and S1, and that X = X1⊕X2⊕· · ·⊕Xn.
For i = 1, 2, · · · , n let Ai := T1|Xi ∈ L(Xi) and Bi := S1|Xi ∈ L(Xi). Then
clearly, AiBi = BiAi and

T1 + S1 = (A1 +B1)⊕ (A2 +B2)⊕ · · · ⊕ (An +Bn).
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Obviously, σ(Bi) = σ(B|Xi) = {µi} and hence σ(Bi − µiI) = {0} i.e. Bi − µiI
is a quasinilpotent operator, for all i = 1, 2, · · · , n.

(a) Suppose that T1 has SVEP. Since SVEP is inherited by the restrictions
to closed invariant subspaces, then Ai has SVEP, we conclude that Ai +µiI has
SVEP by Lemma 1.3. Since Ai +Bi = (Ai + µiI) + (Bi − µiI) and Bi − µiI is
quasinilpotent, then, by Theorem 1.7, Ai +Bi has SVEP, and hence T1 + S1 =
(A1 +B1)⊕ · · · ⊕ (An +Bn) has SVEP by Lemma 1.4.

(b) Suppose that T1 has property (C). Then, by Propposition 1.2.21 of [23],
Ai has property (C), and hence Ai + µiI has property (C) by Lemma 1.3.
Since Bi − µiI is a quasinilpotent operator, which shows that, by Theorem 1.7,
Ai + Bi = (Ai + µiI) + (Bi − µiI) has property (C). By Lemma 1.5, it then
follows that T1+S1 = (A1+B1)⊕· · ·⊕ (An+Bn) has property (C), as desired.

(c) Suppose that T1 has property (β). Since the restriction of an operator
with property (β) to a closed invariant subspace certainly inherits this property,
Ai has property (β) and we have Ai + µiI has property (β) by Lemma 1.3. We
conclude that, by Theorem 1.7, Ai +Bi = (Ai + µiI) + (Bi − µiI) has property
(β), so that Lemma 1.6 ensures that T1 + S1 has property (β).

(d) Note that (β) and (δ) are complete dual. This assertion follows from (c)
by duality.

(e) Note that T1 is decomposable if and only if it has both property (β) and
(δ). This assertion follows from (c) and (d). □

It is well known from Corollary 2.2 of [20] that if S ∈ L(X) is compact and
σ(S) = {0, λ1, λ2, · · · } then the space XS(C \ {0}) is not closed.

Corollary 2.10. Let T ∈ L(X) and suppose that S ∈ L(X) is compact which
commutes with T. Suppose that XS(C \ {0}) is closed. Let T1 := T |XS(C \ {0})
and S1 := S|XS(C\{0}). Then T1 and T1+S1 share the local spectral properties
such as SVEP, Dunford’s property (C), Bishop’s property (β), decomopsition
property (δ) and decomposability.

Proof. Theorem 2.8 and Theorem 2.1 of [20]. □

We say that an operator S ∈ L(X) is polynomially Riesz if there exists a
non-zero complex polynomial p(z) such that p(S) is Riesz.

Corollary 2.11. Let T ∈ L(X), S ∈ L(X) be a polynomially Riesz operator
commuting with T. Let T1 := T |Xp(S)({0}) and S1 := S|Xp(S)({0}) for some
non-zero complex polynomial p(z). Then T1 and T1 + S1 share the local spec-
tral properties such as SVEP, Dunford’s property (C), Bishop’s property (β),
decomopsition property (δ) and decomposability.
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Corollary 2.12. Let T ∈ L(X), S ∈ L(X) be a polynomially Riesz operator
commuting with T and let F ⊆ C \ {0} be a closed. Let T1 := T |Xp(S)(F )
and S1 := S|Xp(S)(F ) for some non-zero complex polynomial p(z). Then T1 and
T1+S1 share the local spectral properties such as SVEP, Dunford’s property (C),
Bishop’s property (β), decomopsition property (δ) and decomposability.
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3. P. Aiena, M.L. Colasante, M. González, Operators which have a closed quasi-nilpotent part,

Proc. Amer. Math. Soc. 130 (2002), 2701-2710.
4. P. Aiena, T.L. Miller, and M.M. Neumann, On a localized single-valued extension property,

Math. Proc. Royal Irish. Acad. 104A (2004), 17-34.

5. P. Aiena and O. Monsalve, Operators which do not have the single valued extension property,
J. Math. Anal. Appl. 250 (2000), 435-448.

6. P. Aiena and M.M. Neumann, On the stability of the localized single-valued extension prop-
erty under commuting perturbations, Proc. Amer. Soc. 141 (2013), 2039-2050.

7. E. Albrecht and J. Eschmeier, Analytic fuctional models and local spectral theory, Proc.

London Math. Soc. 3 75 (1997), 323-348
8. E. Albrecht, J. Eschmeier and M.M. Neumann, Some topics in the theory of decompos-

able operators In: Advances in invariant subspaces and other results of Operator Theory:
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