DOI QR코드

DOI QR Code

ON LOCAL SPECTRAL PROPERTIES OF RIESZ OPERATORS

  • Received : 2022.02.21
  • Accepted : 2023.01.06
  • Published : 2023.03.30

Abstract

In this paper we show that if T ∈ L(X) and S ∈ L(X) is a Riesz operator commuting with T and XS(F) ∈ Lat(S), where F = {0} or F ⊆ ℂ ⧵ {0} is closed then T|XS(F) and T|XT(F) + S|XS(F) share the local spectral properties such as SVEP, Dunford's property (C), Bishop's property (𝛽), decomopsition property (𝛿) and decomposability. As a corollary, if T ∈ L(X) and Q ∈ L(X) is a quasinilpotent operator commuting with T then T is Riesz if and only if T + Q is Riesz. We also study some spectral properties of Riesz operators acting on Banach spaces. We show that if T, S ∈ L(X) such that TS = ST, and Y ∈ Lat(S) is a hyperinvarinat subspace of X for which 𝜎(S|Y ) = {0} then 𝜎*(T|Y + S|Y ) = 𝜎*(T|Y ) for 𝜎* ∈ {𝜎, 𝜎loc, 𝜎sur, 𝜎ap}. Finally, we show that if T ∈ L(X) and S ∈ L(Y ) on the Banach spaces X and Y and T is similar to S then T is Riesz if and only if S is Riesz.

Keywords

References

  1. P. Aiena, Fredholm and local spectral theory, with application to multipliers, Kluwer Acad. Publishers, 2004.
  2. P. Aiena and Muller, The localized single-valued extension propertry and Riesz operators, Proc. Amer. Math. Soc. 143 (2015), 2051-2055. https://doi.org/10.1090/S0002-9939-2014-12404-X
  3. P. Aiena, M.L. Colasante, M. Gonzalez, Operators which have a closed quasi-nilpotent part, Proc. Amer. Math. Soc. 130 (2002), 2701-2710. https://doi.org/10.1090/S0002-9939-02-06386-4
  4. P. Aiena, T.L. Miller, and M.M. Neumann, On a localized single-valued extension property, Math. Proc. Royal Irish. Acad. 104A (2004), 17-34. https://doi.org/10.1353/mpr.2004.0016
  5. P. Aiena and O. Monsalve, Operators which do not have the single valued extension property, J. Math. Anal. Appl. 250 (2000), 435-448. https://doi.org/10.1006/jmaa.2000.6966
  6. P. Aiena and M.M. Neumann, On the stability of the localized single-valued extension property under commuting perturbations, Proc. Amer. Soc. 141 (2013), 2039-2050. https://doi.org/10.1090/S0002-9939-2013-11635-7
  7. E. Albrecht and J. Eschmeier, Analytic fuctional models and local spectral theory, Proc. London Math. Soc. 3 75 (1997), 323-348
  8. E. Albrecht, J. Eschmeier and M.M. Neumann, Some topics in the theory of decomposable operators In: Advances in invariant subspaces and other results of Operator Theory: Advances and Applications, Birkhauser Verlag, Basel 17 (1986), 15-34.
  9. J. Bracic and V. Muller, On bounded local resolvents, Int. Eq. Operator Theory 55 (2006), 477-486. https://doi.org/10.1007/s00020-005-1402-4
  10. I. Colojoara and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
  11. H.R. Dowson, Spectral theory of linear operators, Academic Press, London, 1978.
  12. N. Dunford, Spectral theory II. Resolution of the identity, Pacific J. Math. 2 (1952), 559-614. https://doi.org/10.2140/pjm.1952.2.559
  13. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. https://doi.org/10.2140/pjm.1954.4.321
  14. N. Dunford and J.T. Schwartz, Linear operators, Part III: Specral operators, Wiley, New York, 1971.
  15. I. Erdelyi and R. Lange, Spectral decompositions on Banach spaces, Lecture Notes in Mathematics, No. 623, Springer-Verlag, New York, 1977.
  16. J. Eschmeier, K.B. Laursen and M.M. Neumann, Multipliers with natural local spectra on commutative Banach algebras, J. Functional Analysis 138 (1996), 273-294. https://doi.org/10.1006/jfan.1996.0065
  17. J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69. https://doi.org/10.2140/pjm.1975.58.61
  18. J. Eschmeier and B. Prunaru, Invariant subspaces and localizable spectrum, Int. Eq. Operator Theory 42 (2002), 461-471. https://doi.org/10.1007/BF01270923
  19. C. Foias, Spectral maximal spaces and decomposable operators in Banach spaces, Arch. Math. 14 (1963), 341-349. https://doi.org/10.1007/BF01234965
  20. W. Gong and L. Wang, Mbekhta's subspaces and a spectral theory of compact operators, Proc. Amer. Math. Soc. 131 (2002), 587-592. https://doi.org/10.1090/S0002-9939-02-06639-X
  21. H.G. Heuser, Functional analysis, John Sons Ltd., Chichester, 1982.
  22. K.B. Laursen and M.M. Neumann, Asymptotic intertwining and spectral inclusions on Banach spaces, Czech. Math. J. 43 (1993), 483-497. https://doi.org/10.21136/CMJ.1993.128413
  23. K.B. Laursen and M.M. Neumann, An Introduction to Local Spectral Theory, Clarendon Press, Oxford Science Publications, Oxford, 2000.
  24. T.L. Miller and V.G. Miller, and M.M. Neumann, On operators with closed analytic core, Rend. Circ. Mat. Palermo 51 (2002), 483-497.
  25. M. Mbekhta, Sur la th'eorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
  26. M. Oudghiri, Weyl's theorem and perturbations, Int. Eq. Operator Theory 53 (2005), 535-545. https://doi.org/10.1007/s00020-004-1342-4
  27. V. Rakocevic, Semi-Borwder operators and perturbations, Studia Math. 122 (1997), 131-137. https://doi.org/10.4064/sm-122-2-131-137
  28. H. Schechter and R. Whitley, Best Fredholm perturbation theorem, Studia Math. 90 (1980), 175-190. https://doi.org/10.4064/sm-90-3-175-190
  29. P. Vrbova, On local spectral properties of operators in Banach spaces, Czechoslovak. Math. J. 23 (1973), 483-492. https://doi.org/10.21136/CMJ.1973.101189
  30. J.-K. Yoo, Local spectral theory and quasinilpotent operators, J. Appl. Math. & Informatics 40 (2022), 785-794.