BISHOP'S PROPERTY (β) **AND SPECTRAL INCLUSIONS ON BANACH SPACES**

JONG-KWANG YOO AND HEUNG JOON OH*

ABSTRACT. Let $T \in L(X)$, $S \in L(Y)$, $A \in L(X,Y)$ and $B \in L(Y,X)$ such that SA = AT, TB = BS, AB = S and BA = T. Then S and T shares the same local spectral properties SVEP, Bishop's property (β), property (β), property (δ) and and subscalarity. Moreover, the operators $\lambda I - T$ and $\lambda I - S$ have many basic operator properties in common.

AMS Mathematics Subject Classification : 47A11, 47B40 Key words and phrases : Bishop's Property (β), decomposable operators, local spectral theory, subscalar operators.

1. Introduction

Let X be a complex Banach space, and let L(X) be the Banach algebra of all bounded linear operators on X. For an operator $T \in L(X)$, $\sigma(T)$ and $\rho(T)$ denotes the spectrum and resolvent set of T and let Lat(T) stand for the collection of all T-invariant closed linear subspaces of X, and for $Y \in Lat(T)$, T|Y denotes the restriction of T on Y. For $T \in L(X)$, we denote by

$$R_T: \lambda \in \rho(T) \to R_T(\lambda) = (T - \lambda I)^{-1} \in L(X)$$

its resolvent map. For an operator $T \in L(X)$ and arbitrary $x \in X$, we define $f: \rho(T) \to X$ by

$$f(\lambda) := R_T(\lambda)x.$$

Then f may have analytic extensions, solutions of the equation $(T - \lambda)f(\lambda) = x$. If for every $x \in X$ any two extensions of $R_T(\lambda)x$ agree on their common domain, $T \in L(X)$ is said to have the *single-valued extension property(abbreviated SVEP)*. In this case, let $\rho_T(x)$ be the maximal domain of such extensions. The

459

Received July 9, 2010. Revised July 26, 2010. Accepted August 20, 2010. $\ ^* {\rm Corresponding}$ author.

^{© 2011} Korean SIGCAM and KSCAM.

set $\sigma_T(x) := \mathbb{C} \setminus \rho_T(x)$ is called the *local spectrum* of T at x. Evidently, $\sigma_T(x)$ is closed with $\sigma_T(x) \subseteq \sigma(T)$. The resolvent set $\rho(T)$ is always a subset of $\rho_T(x)$, so the analytic solutions occurring in the definition of the local resolvent set may be thought of as local extensions of the function $(T - \lambda)^{-1}x$.

An operator $T \in L(X)$ is said to have the single-valued extension property at λ_0 , if for every open neighborhood U of λ_0 , the only analytic function $f: U \to X$ which satisfies the equation $(\lambda I - T)f(\lambda) = 0$ for all $\lambda \in U$ is the function $f \equiv 0$. In fact, the operator T has the SVEP if and only if T has SVEP at every $\lambda \in \mathbb{C}$. It is obvious that T has the SVEP if and only if the zero function is the only analytic function that satisfies $(T - \lambda)f(\lambda) = 0$. By the Liouville theorem, it is clear that T has the SVEP if and only if for any non-zero $x \in X$, we have $\sigma_T(x) \neq \phi$, see [9] and [11] for more details.

Let $\mathcal{E}(U, X)$ be the Fréchet algebra of all infinitely differentiable X-valued functions on $U \subseteq \mathbb{C}$ endowed with the topology of uniform convergence on compact subsets of U of all derivtives.

The operator $T \in L(X)$ is said to have property $(\beta)_{\epsilon}$ at $\lambda \in \mathbb{C}$ if there exists U a neighborhood of λ such that for each open set $O \subseteq U$ and for any sequence $(f_n)_n$ of X-valued functions in $\mathcal{E}(O, X)$ the convergence of $(T - \mu)f_n(\mu)$ to zero in $\mathcal{E}(O, X)$ yields to the convergence of f_n to zero in $\mathcal{E}(O, X)$. We define by

 $\sigma_{(\beta)_{\epsilon}}(T) = \{\lambda \in \mathbb{C} : T \text{ fails to satisfy } (\beta)_{\epsilon} \text{ at } \lambda \}.$

We say that T satisfies property $(\beta)_{\epsilon}$ provided that $\sigma_{(\beta)_{\epsilon}}(T) = \phi$.

We shall also need some closely related notions. The operator T is said to satisfy Bishop's property (β) at $\lambda \in \mathbb{C}$ if there exists r > 0 such that for every open subset $U \subseteq D(\lambda, r)$ and for any sequence $(f_n)_n \subseteq \mathcal{E}(U, X)$, if $\lim_{n \to \infty} (T - \mu)f_n(\mu) = 0$ in $\mathcal{E}(U, X)$, then $\lim_{n \to \infty} f_n(\mu) = 0$ in $\mathcal{E}(U, X)$, where $D(\lambda, r)$ is the open disc centred at $\lambda \in \mathbb{C}$ with radius r > 0.

We define by

$$\sigma_{\beta}(T) = \{ \lambda \in \mathbb{C} : T \text{ fails to satisfy}(\beta) \text{ at } \lambda \}.$$

An operator $T \in L(X)$ is said to have *Bishop's property* (β) provided that $\sigma_{\beta}(T) = \phi$. Obviously, property (β) implies that T has the single valuedextension property. Furthermore, the operator T is said to have the *decomposition property* (δ) if its dual T^* satisfies Bishop's property (β) . In [1], Albrecht and Eschmeier proved that the properties (β) and (δ) are dual to each other in the sense that an operator $T \in L(X)$ satisfies (β) if and only if the adjoint operator T^* on the dual space X^* satisfies (δ) .

In this note, we proved that if $T \in L(X)$, $S \in L(Y)$, $A \in L(X,Y)$ and $B \in L(Y,X)$ such that SA = AT, TB = BS, AB = S and BA = T, then S and T shares the same local spectral properties SVEP, Bishop's property (β) ,

property $(\beta)_{\epsilon}$, property (δ) and subscalarity. Moreover, the operators $\lambda I - T$ and $\lambda I - S$ have many basic operator properties in common.

2. Local spectral properties of linear operators

For $T \in L(X)$, $S \in L(Y)$ and for positive integer $n \in \mathbb{Z}$, we consider the space

 $\mathcal{I}^{n}(S,T) := \{ A \in L(X,Y) : C(S,T)^{n}(A) = 0 \},\$

where C(S,T) is the *n*-th composition of the map C(S,T)(A) := SA - AT. The interest of the space $\mathcal{I}^n(S,T)$ stems from the fact that it contain many significant classes of maps

Example 1. If \mathcal{A} and \mathcal{B} are semi-simple Banach algebras and $\theta : \mathcal{A} \longrightarrow \mathcal{B}$ an algebra homomorphism then $\theta \in I(\theta(a), a)$ for any $a \in \mathcal{A}$ in the sense that $\theta(a)\theta(x) - \theta(ax) = 0$ for all $x \in \mathcal{A}$, i.e. $\theta L_a = L_{\theta(a)}\theta$ where $L_a x := ax$ for all $x \in \mathcal{A}$.

It is easy to see that if \mathcal{A} is a Banach algebra and \mathcal{M} is a commutative Banach \mathcal{A} -module, that is, \mathcal{M} is an \mathcal{A} -bimodule and ma = am for all $a \in \mathcal{A}, m \in \mathcal{M}$ and if $D : \mathcal{A} \longrightarrow \mathcal{M}$ is a module derivation, i.e., D is a linear map obeying the differentiation rule D(xy) = xDY + D(x)y for all $x, y \in \mathcal{A}$ then $C(a, a)D \in I(a, a)$ for every $a \in \mathcal{A}$ as an easy calculation will show.

Example 2. Let $S: X \to Y$ and $R: Y \to X$ be bounded linear operators. Then $S \in I(\lambda I - SR, \lambda I - RS)$ and $R \in I(\lambda I - RS, \lambda I - SR)$ for every complex number $\lambda \in \mathbb{C}$. In particular, $S \in I(SR, RS)$ and $R \in I(RS, SR)$, since $RS \in L(X)$ and $SR \in L(Y)$.

Example 3. Let $T \in L(\mathcal{H})$ be a bounded operator on some Hilbert space \mathcal{H} and U|T| be its polar decomposition, where $|T| := (TT^*)^{\frac{1}{2}}$ and U is the approximate partial isometry. The generalized Aluthge transform associated with T and $s, t \geq 0$, is defined by

$$T(s,t) := |T|^s U|T|^t.$$

In the case $s = t = \frac{1}{2}$, the operator

$$\tilde{T} = |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}$$

is called the Aluthge transform of T and was first considered by A. Aluthge, see more details [12] and [13]. It is easy to see that for all $0 \le r \le t$

$$|T|^{s}U|T|^{t-r} \in I(T(s,t), T(s+r,t-r))$$

and

$$|T|^r \in I(T(s+r,t-r),T(s,t)).$$

Proposition 2.1. Let $T \in L(X)$, $S \in L(Y)$, $A \in L(X,Y)$ and $B \in L(Y,X)$ for which $A \in \mathcal{I}(S,T)$ and $B \in \mathcal{I}(T,S)$. Assume that AB = S and BA = T. Then T has the Bishop's property (β) at $\lambda \in \mathbb{C}$ if and only if S has the Bishop's property (β) at $\lambda \in \mathbb{C}$. Moreover, T has the Bishop's property (β) if and only if S has the Bishop's property (β).

Proof. Let $\lambda \in \mathbb{C} \setminus \sigma_{\beta}(S)$ and let $(f_n)_n$ be a sequence of X-valued analytic functions in a neighborhood of λ such that

1)
$$\lim_{n \to \infty} (T - \mu) f_n(\mu) = 0 \quad \text{in } \mathcal{E}(V(\lambda), X).$$

Then $0 = \lim_{n \to \infty} A(T - \mu) f_n(\mu) = \lim_{n \to \infty} (S - \mu) A f_n(\mu)$ in $\mathcal{E}(V(\lambda), Y)$. It follows that

(2)
$$\lim_{n \to \infty} Af_n(\mu) = 0 \quad \text{in } \mathcal{E}(V(\lambda), Y),$$

Since $\lambda \notin \sigma_{\beta}(S)$. From (2), we have

$$0 = \lim_{n \to \infty} BAf_n(\mu) = \lim_{n \to \infty} Tf_n(\mu) \quad \text{in } \mathcal{E}(V(\lambda), X)$$

In equation (1), we deduce that $(\mu f_n(\mu))_n$ converges to 0 on compact sets. Now since f_n are analytic, the maximum modulus priciple implies $(f_n)_n$ converges to 0 on compact sets. Thus $\lambda \in \mathbb{C} \setminus \sigma_\beta(T)$. The reverse implication is obtained by symmetry. \Box

Corollary 2.2. Let $T \in L(X)$, $S \in L(Y)$, $A \in L(X,Y)$ and $B \in L(Y,X)$ for which $A \in \mathcal{I}(S,T)$ and $B \in \mathcal{I}(T,S)$. Assume that AB = S and BA = T. Then T has the SVEP at $\lambda \in \mathbb{C}$ if and only if S has the SVEP at $\lambda \in \mathbb{C}$.

Corollary 2.3. Let $S: X \longrightarrow Y$ and $R: Y \longrightarrow X$ be bounded linear operators. Then for every complex numbers $\lambda \in \mathbb{C}$, $RS - \lambda I$ has the SVEP if and only if $SR - \lambda I$ has SVEP. In particular, RS has the SVEP if and only if SR has SVEP.

We denote by $C^{\infty}(\mathbb{C})$ the Fréchet algebra of all infinitely differentiable complex valued functions defined on the complex plane \mathbb{C} with the topology of uniform convergence of every derivative on each compact subset of \mathbb{C} . An operator $T \in L(X)$ is called a *generalized scalar operator* if there exists a continuous algebra homomorphism $\Phi : C^{\infty}(\mathbb{C}) \to L(X)$ satisfying $\Phi(1) = I$, the identity operator on X, and $\Phi(z) = T$ where z denotes the identity function on \mathbb{C} . Such a continuous function Φ is in fact an operator valued distribution and it is called a spectral distribution for T, see [11], for more details.

An operator $T \in L(X)$ is said to be *subscalar* if T is similar to the restriction of a generalized scalar operator to one of its closed invariant subspaces. It follows from [11, Proposition 2.4.9] that all hyponormal and, more generally, all M-hyponormal operators are subscalar.

The following lemma is need.

Lemma 2.4. Let O be an open set and $(f_n)_n$ be a sequence in $\mathcal{E}(O, X)$ such that $(\mu f_n(\mu))_n$ converges to zero in $\mathcal{E}(O, X)$. Then $(f_n)_n$ converges to zero in $\mathcal{E}(O, X)$.

Proof. see [3, Lemma 2.1]. \Box

The following result generalizes [3, Theorem 2.1].

Theorem 2.5. Let $T \in L(X)$, $S \in L(Y)$, $A \in L(X,Y)$ and $B \in L(Y,X)$ for which $A \in \mathcal{I}(S,T)$ and $B \in \mathcal{I}(T,S)$. Assume that AB = S and BA = T. Then $\sigma_{(\beta)_{\epsilon}}(T) = \sigma_{(\beta)_{\epsilon}}(S)$. In particular, T is subscalar if and only if S is subscalar.

Proof. Suppose that $\lambda \in \mathbb{C} \setminus \sigma_{(\beta)_{\epsilon}}(S)$. Then there exists O a neighborhood of λ such that $O \cap \sigma_{(\beta)_{\epsilon}}(S) = \phi$. If $(f_n)_n$ is any sequence in $\mathcal{E}(O, X)$ such that $(T - \mu)f_n(\mu)$ converges to zero in $\mathcal{E}(O, X)$, then

$$0 = \lim_{n \to \infty} A(T - \mu) f_n(\mu) = \lim_{n \to \infty} (S - \mu) A f_n(\mu)$$

and hence $\lim_{n\to\infty} Af_n(\mu) = 0$ in $\mathcal{E}(O, Y)$. Thus we have

$$0 = \lim_{n \to \infty} BAf_n(\mu) = \lim_{n \to \infty} Tf_n(\mu)$$

It follows that $(\mu f_n(\mu))_n$ converges to zero in $\mathcal{E}(O, X)$. By Lemma 2.4, we have $(f_n)_n$ converges to zero in $\mathcal{E}(O, X)$. Hence $\lambda \in \mathbb{C} \setminus \sigma_{(\beta)_{\epsilon}}(T)$. The reverse implication is obtained by symmetry. \Box

The following corollaries are immediate consequences of Theorem 2.5

Corollary 2.6. Let $S: X \longrightarrow Y$ and $R: Y \longrightarrow X$ be bounded linear operators. Then $\sigma_{(\beta)_{\epsilon}}(RS) = \sigma_{(\beta)_{\epsilon}}(SR)$. In particular, RS is subscalar if and only if SR is subscalar.

Let $T \in L(\mathcal{H})$ be a bounded operator on some Hilbert space \mathcal{H} and U|T| be its polar decomposition, and U|T| be its polar decomposition, where $|T| := (TT^*)^{\frac{1}{2}}$ and U is the approximate partial isometry. For $r \leq t$, let $R = |T|^r$ and $S = |T|^s U|T|^{t-r}$. Then SR = T(s,t) and RS = T(s+r,t-r). It follows that T(s,t) and T(s+r,t-r) and in particular \tilde{T} and T almost have the same local spectral properties.

Corollary 2.7. Let $T \in L(\mathcal{H})$, $s \ge 0$ and $0 \le r \le t$. Then T(s,t) has the property (β) (resp. (δ) or subscalar) if and only if T(s+r,t-r) has the property (β) (resp. (δ) or subscalar).

The following result generalizes [3, Proposition 3.1].

Proposition 2.8. Let $T \in L(X)$, $S \in L(Y)$, $A \in L(X,Y)$ and $B \in L(Y,X)$ for which $A \in \mathcal{I}(S,T)$ and $B \in \mathcal{I}(T,S)$. Assume that AB = S and BA = T. Then (a) $\sigma_S(Ax) \subseteq \sigma_T(x) \subseteq \sigma_S(Ax) \cup \{0\}$ for every $x \in X$. In particular, if A is an

(a) $\sigma_S(Ax) \subseteq \sigma_T(x) \subseteq \sigma_S(Ax) \cup \{0\}$ for every $x \in X$. In particular, if A is an injective then $\sigma_T(x) = \sigma_S(Ax)$ for every $x \in X$.

(b) $\sigma_T(By) \subseteq \sigma_S(y) \subseteq \sigma_T(By) \cup \{0\}$ for every $y \in Y$. In particular, if B is an injective then $\sigma_S(y) = \sigma_T(By)$ for every $y \in Y$.

Proof. (a) Let $\lambda \notin \sigma_T(x)$ and $x(\mu)$ be an X-valued analytic function in a neighborhood O of λ such that $(T - \mu)x(\mu) = x$ for every $\mu \in O$. Then we have

$$Ax = A(T - \mu)x(\mu) = (S - \mu)Ax(\mu) \text{ for all } x \in O,$$

Since SA = AT, and hence $\lambda \notin \sigma_S(Ax)$. To show the second inclusion, let $\lambda \notin \sigma_S(Ax) \cup \{0\}$ and $y(\mu)$ be an Y-valued analytic function on an open neighborhood $O(0 \notin O)$ of λ , such that

$$(S - \mu)y(\mu) = Ax$$

for all $\mu \in O$. Thus $Tx = BAx = B(S - \mu)y(\mu) = (T - \mu)By(\mu)$, since BA = Tand TB = BS, and hence $T(By(\mu) - x) = \mu By(\mu)$. We define $z : O \to X$ by

$$z(\mu) := \frac{1}{\mu} (By(\mu) - x).$$

Then clearly, $x = (T - \mu)z(\mu)$ for every $\mu \in O$, and thus $\lambda \notin \sigma_T(x)$.

(b) It suffices to consider the case $\lambda = 0$, since $\sigma_{T+\lambda I}(x) = \sigma_T(x) + \lambda$ for every $\lambda \in \mathbb{C}$ and every $x \in X$. Suppose that $0 \in \sigma_S(Ax)$. Then, by (a) $\sigma_T(x) = \sigma_S(Ax)$ for every $x \in X$. Suppose that $0 \notin \sigma_S(Ax)$ and let $y(\mu)$ be an Y-valued analytic function in a neighborhood U of 0 such that $(S - \mu)y(\mu) = Ax$ for every $\mu \in U$. From the injectivity of A, it follows that x = By(0), since Ax = Sy(0) = ABy(0). Moreover, we have $\mu y(\mu) = Sy(\mu) - Ax = A(By(\mu) - x)$ and so

$$y(\mu) = A[\frac{1}{\mu}(By(\mu) - x)]$$

for every $\mu \in U \setminus \{0\}$. Set $z(\mu) := \frac{1}{\mu}(By(\mu) - x)$ if $\mu \neq 0$, and $z(\mu) := By'(0)$ if $\mu = 0$. It is easily check that $A[x - (T - \mu)z(\mu)] = 0$ for every $\mu \in U$. Since A is injective, we get

$$(T-\mu)z(\mu) = x$$

for every $\mu \in U$, and hence $0 \notin \sigma_T(x)$. The theorem is hence proved. \Box

We need the following elementary lemma.

Lemma 2.9. Let $T \in L(X)$, $S \in L(Y)$, $A \in L(X,Y)$ and $B \in L(Y,X)$ for which $A \in \mathcal{I}(S,T)$ and $B \in \mathcal{I}(T,S)$. Assume that AB = S and BA = T. Then (a) A(Ker(I-T)) = Ker(I-S) and B(Ker(I-S)) = Ker(I-T). (b) $Ker(A) \cap Ker(I-T) = \{0\}$ and $Ker(B) \cap Ker(I-S) = \{0\}$.

Proof. (a) If $x \in Ker(I - T)$ then Tx = x, Thus Ax = ATx = SAx, and hence $Ax \in Ker(I - S)$. To verify the opposite inclusion, suppose $y \in Ker(I - S)$. Arguing as above, we have $B(Ker(I - S)) \subseteq Ker(I - T)$. Therefore $By \in Ker(I - T)$, and thus $y = Sy \in S(Ker(I - T))$. This proves (a). (b) If $x \in Ker(A) \cap Ker(I - T)$, then Ax = 0, and Tx = x and hence x = Tx = BAx = 0, since BA = T. This proves (b). □

As usual, we use σ_p , σ_{sur} , σ_{com} , σ_{ap} , σ_r and σ_c to denote the *point*, surjectivity, compression, approximate point, residual and continuous spectrum, respectively. Thus

 $\begin{aligned} \sigma_p(T) &:= \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not injective}\},\\ \sigma_{sur}(T) &:= \{\lambda \in \mathbb{C} : (T - \lambda I) X \neq X\},\\ \sigma_{com}(T) &:= \{\lambda \in \mathbb{C} : (T - \lambda I)(X) \text{ is not dense in } X\},\\ \sigma_r(T) &:= \{\lambda \in \mathbb{C} : T - \lambda I \text{ is injective and } (T - \lambda I)(X) \text{ is not dense in } X\},\\ \sigma_c(T) &:= \sigma(T) \setminus \{\sigma_p(T) \cup \sigma_r(T)\}. \end{aligned}$

It is clear that $\sigma_{sur}(T)$ is compact with

$$\partial \sigma(T) \subseteq \sigma_{sur}(T) = \sigma_{ap}(T^*) \subseteq \sigma(T).$$

Furthermore, it is clear that $\sigma_{com}(T) = \sigma_p(T^*)$, $\sigma_r(T) = \sigma_{com}(T) \setminus \sigma_p(T)$ and $\sigma_c(T) = \sigma(T) \setminus \{\sigma_p(T) \cup \sigma_{com}(T)\}$, see [4] and [11] for more details.

The following result generalizes [2, Theorem 3].

Theorem 2.10. Let $T \in L(X)$, $S \in L(Y)$, $A \in L(X,Y)$ and $B \in L(Y,X)$ for which $A \in \mathcal{I}(S,T)$ and $B \in \mathcal{I}(T,S)$. Assume that AB = S and BA = T. Then (a) $\sigma_p(T) \setminus \{0\} = \sigma_p(S) \setminus \{0\}$. (b) $\sigma_{com}(T) \setminus \{0\} = \sigma_{com}(S) \setminus \{0\}$. (c) $\sigma_{ap}(T) \setminus \{0\} = \sigma_{ap}(S) \setminus \{0\}$. (d) $\sigma_{sur}(T) \setminus \{0\} = \sigma_{sur}(S) \setminus \{0\}$. (e) $\sigma_r(T) \setminus \{0\} = \sigma_r(S) \setminus \{0\}$. (f) $\sigma(T) \setminus \{0\} = \sigma(S) \setminus \{0\}$. (g) $\sigma_c(T) \setminus \{0\} = \sigma_c(S) \setminus \{0\}$. *Proof.* (a) Since AB = S and BA = T, we have

$$\begin{split} \lambda \notin \sigma_p(T) \setminus \{0\} \Leftrightarrow \lambda &= 0 \text{ or } \lambda I - T \text{ is injective} \\ \Leftrightarrow \lambda &= 0 \text{ or } I - \lambda^{-1}T \text{ is injective} \\ \Leftrightarrow \lambda &= 0 \text{ or } Ker(I - \lambda^{-1}T) = \{0\} \\ \Leftrightarrow \lambda &= 0 \text{ or } A(Ker(I - \lambda^{-1}T)) = Ker(I - \lambda^{-1}S)) = \{0\} \\ \Leftrightarrow \lambda \notin \sigma_p(S) \setminus \{0\}. \end{split}$$

(b) By passing to duals, $\sigma_p(T^*) \setminus \{0\} = \sigma_p(S^*) \setminus \{0\}$. Since $\sigma_{com}(T) = \sigma_p(T^*)$, from this and (a), we obtain

$$\sigma_{com}(T) \setminus \{0\} = \sigma_p(T^*) \setminus \{0\} = \sigma_p(S^*) \setminus \{0\} = \sigma_{com}(S) \setminus \{0\}.$$

(c) Assume that $\lambda \in \sigma_{ap}(T) \setminus \{0\}$. Then there exists $\{x_n\} \subseteq X$, $||x_n|| = 1$ for all n and $\lim_{n \to \infty} ||(\lambda I - T)x_n|| = 0$. Since SA = AT, we have

$$\|(\lambda I - S)Ax_n\| = \|A(\lambda I - T)x_n\| \le \|A\| \|(\lambda I - T)x_n\|_{2}$$

and hence $\lim_{n\to\infty} \|(\lambda I - S)Ax_n\| = 0$. In fact, $\|Ax_n\|$ is bounded away from zero. For if not, $\|Ax_{n_k}\| \to 0$ for some subsequence $\{x_{n_k}\}$ of $\{x_n\}$. Then

$$|\lambda| = |\lambda| ||x_{n_k}|| \le ||(\lambda I - T)x_{n_k}|| + ||Tx_{n_k}|| \longrightarrow 0,$$

a contradiction. This proves $\lambda \in \sigma_{ap}(S) \setminus \{0\}$. The reverse implication is obtained by symmetry.

(d) It is clear from (c) that $\sigma_{ap}(T^*) \setminus \{0\} = \sigma_{ap}(S^*) \setminus \{0\}$. Since $\sigma_{sur}(T) = \sigma_{ap}(T^*)$ for any $T \in L(X)$, we have

$$\sigma_{sur}(T) \setminus \{0\} = \sigma_{ap}(T^*) \setminus \{0\}$$
$$= \sigma_{ap}(S^*) \setminus \{0\}$$
$$= \sigma_{sur}(S) \setminus \{0\}.$$

(e) It is clear from the definition $\sigma_r(T)$ that $\sigma_r(T) = \sigma_{com}(T) \setminus \sigma_p(T)$. From (a) and (b), we have

$$\sigma_r(T) \setminus \{0\} = \sigma_{com}(T) \setminus (\sigma_p(T) \cup \{0\})$$

= $(\sigma_{com}(T) \setminus \{0\}) \setminus (\sigma_p(T) \setminus \{0\})$
= $(\sigma_{com}(S) \setminus \{0\}) \setminus (\sigma_p(S) \setminus \{0\})$
= $\sigma_{com}(S) \setminus (\sigma_p(S) \cup \{0\})$
= $\sigma_r(S) \setminus \{0\}.$

466

(f) It is clear that $\sigma(T) = \sigma_p(T) \cup \sigma_{sur}(T)$. From (a) and (d), we have

$$\sigma(T) \setminus \{0\} = (\sigma_p(T) \cup \sigma_{sur}(T)) \setminus \{0\}$$
$$= (\sigma_p(T) \setminus \{0\}) \cup (\sigma_{sur}(T) \setminus \{0\})$$
$$= (\sigma_p(S) \setminus \{0\}) \cup (\sigma_{sur}(S) \setminus \{0\})$$
$$= (\sigma_p(S) \cup \sigma_{sur}(S)) \setminus \{0\}$$
$$= \sigma(S) \setminus \{0\}.$$

(g) It is clear from the definition of continuous spectrum that

$$\sigma_c(T) = \sigma(T) \setminus (\sigma_{com}(T) \cup \sigma_p(T)).$$

From (a), (b) and (f), we obtain

$$\sigma_{c}(T) \setminus \{0\} = \sigma(T) \setminus (\sigma_{com}(T) \cup \sigma_{p}(T) \cup \{0\})$$

= $(\sigma(T) \setminus \{0\}) \setminus ((\sigma_{com}(T) \setminus \{0\}) \cup (\sigma_{p}(T) \setminus \{0\}))$
= $(\sigma(S) \setminus \{0\}) \setminus ((\sigma_{com}(S) \setminus \{0\}) \cup (\sigma_{p}(S) \setminus \{0\}))$
= $\sigma(S) \setminus (\sigma_{com}(S) \cup \sigma_{p}(S) \cup \{0\})$
= $\sigma_{c}(S) \setminus \{0\}.$

This proves theorem. \Box

The following corollaries are immediate consequences of Theorem 2.5

Corollary 2.11. Let $S \in L(X, Y)$ and $R \in L(Y, X)$. Then $\sigma(SR) \setminus \{0\} = \sigma(RS) \setminus \{0\}$ and $\sigma_{\Omega}(SR) \setminus \{0\} = \sigma_{\Omega}(RS) \setminus \{0\}$,

where σ_{Ω} denotes each one of σ , σ_p , σ_{com} , σ_{ap} , σ_{ap} , σ_{sur} , σ_r , and σ_c .

References

- 1. E. Albrecht and J. Eschmeier, *Functional models and local spectral theory*, Preprint University of Saarbrucken and University of Münster (1991).
- B. A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc. Vol. 126(4) (1998), 1055-1061.
- 3. C. Benhida and E. H. Zerouali, *Local spectral theory of linear operators RS and SR*, Integral Equations Operator Theory 54 (2006), 1-8.
- 4. S. K. Berberian, *Lectures in functional analysis and operator theory*, Springer-Verlag, 1973, New York.
- 5. E. Bishop, A duality theory for arbitrary operators, Pacific J. Math. 9 (1959), 379-397.
- Lin Chen, Yan Zikun and Ruan Yingbin, Common operator properties of operators RS and SR and p-Hyponormal operators, Integral Equations Operator Theory 43 (2002), 313-325.
- Lin Chen and Yan Zikun, Bishop's property (β) and essential spectra of quasisimilar operators, Proc. Amer. Math. Soc. Vol. 128 (2) (1999), 485-493.

467

- 8. I. Colojoarvă and C. Foiás, *Theory of generalized spectral operators*, Gorden and Breach, 1968, New York.
- J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. Vol. 58(1), (1975), 161-169.
- K. B. Laursen, M. M. Miller and M.M. Neumann, Local spectral properties of commutators, Proceedings of the Edinburgh Math. Soc. 38 (1995), 313-329
- 11. K. B. Laursen and M. M. Neumann, An Introduction to local spectral theory, Clarendon Press, 2000, Oxford.
- 12. M. Martin and M. Putinar, *Lectures on hyponormal operators*, Operator Theory, Advances and Applications, No. 39. (1989), Birkhäuser, Basel.
- 13. M. Putinar, Hyponormal operators are subscalar, J. Operator Theory, 12 (1984), 385-395.

Jong-Kwang Yoo received his BS degree from Chunnam National University and received his MS and Ph. D. degree from Sogang University under the direction of Professor Jae-Chul Rho. He is a professor at Chodang University. His research interests focus on decomposable operators and local spectral theory.

Department of Liberal Arts and Science, Chodang University, Muan 534-800, Korea e-mail: jkyoo@chodang.ac.kr

Heung Joon Oh received his BS, MS and Ph. D. degree from Myongji University under the direction of Professor Gi-iK Kim. He is a professor at Chodang University. His research interests focus on the commutative ring theory and local spectral theory.

Department of Liberal Arts and Science, Chodang University, Muan 534-800, Korea e-mail: hjoh@chodang.ac.kr