BISHOP'S PROPERTY (β) AND SPECTRAL INCLUSIONS ON BANACH SPACES

Jong-Kwang Yoo and Heung Joon OH*

Abstract

Let $T \in L(X), S \in L(Y), A \in L(X, Y)$ and $B \in L(Y, X)$ such that $S A=A T, T B=B S, A B=S$ and $B A=T$. Then S and T shares the same local spectral properties SVEP, Bishop's property (β), property $(\beta)_{\epsilon}$, property (δ) and and subscalarity. Moreover, the operators $\lambda I-T$ and $\lambda I-S$ have many basic operator properties in common.

AMS Mathematics Subject Classification : 47A11, 47B40
Key words and phrases : Bishop's Property (β), decomposable operators, local spectral theory, subscalar operators.

1. Introduction

Let X be a complex Banach space, and let $L(X)$ be the Banach algebra of all bounded linear operators on X. For an operator $T \in L(X), \sigma(T)$ and $\rho(T)$ denotes the spectrum and resolvent set of T and let $\operatorname{Lat}(T)$ stand for the collection of all T-invariant closed linear subspaces of X, and for $Y \in \operatorname{Lat}(T)$, $T \mid Y$ denotes the restriction of T on Y. For $T \in L(X)$, we denote by

$$
R_{T}: \lambda \in \rho(T) \rightarrow R_{T}(\lambda)=(T-\lambda I)^{-1} \in L(X)
$$

its resolvent map. For an operator $T \in L(X)$ and arbitrary $x \in X$, we define $f: \rho(T) \rightarrow X$ by

$$
f(\lambda):=R_{T}(\lambda) x .
$$

Then f may have analytic extensions, solutions of the equation $(T-\lambda) f(\lambda)=x$. If for every $x \in X$ any two extensions of $R_{T}(\lambda) x$ agree on their common domain, $T \in L(X)$ is said to have the single-valued extension property(abbreviated $S V E P)$. In this case, let $\rho_{T}(x)$ be the maximal domain of such extensions. The

[^0]set $\sigma_{T}(x):=\mathbb{C} \backslash \rho_{T}(x)$ is called the local spectrum of T at x. Evidently, $\sigma_{T}(x)$ is closed with $\sigma_{T}(x) \subseteq \sigma(T)$. The resolvent set $\rho(T)$ is always a subset of $\rho_{T}(x)$, so the analytic solutions occurring in the definition of the local resolvent set may be thought of as local extensions of the function $(T-\lambda)^{-1} x$.

An operator $T \in L(X)$ is said to have the single-valued extension property at λ_{0}, if for every open neighborhood U of λ_{0}, the only analytic function $f: U \rightarrow X$ which satisfies the equation $(\lambda I-T) f(\lambda)=0$ for all $\lambda \in U$ is the function $f \equiv 0$. In fact, the operator T has the SVEP if and only if T has SVEP at every $\lambda \in \mathbb{C}$. It is obvious that T has the SVEP if and only if the zero function is the only analytic function that satisfies $(T-\lambda) f(\lambda)=0$. By the Liouville theorem, it is clear that T has the SVEP if and only if for any non-zero $x \in X$, we have $\sigma_{T}(x) \neq \phi$, see [9] and [11] for more details.

Let $\mathcal{E}(U, X)$ be the Fréchet algebra of all infinitely differentiable X-valued functions on $U \subseteq \mathbb{C}$ endowed with the topology of uniform convergence on compact subsets of U of all derivtives.

The operator $T \in L(X)$ is said to have property $(\beta)_{\epsilon}$ at $\lambda \in \mathbb{C}$ if there exists U a neighborhood of λ such that for each open set $O \subseteq U$ and for any sequence $\left(f_{n}\right)_{n}$ of X-valued functions in $\mathcal{E}(O, X)$ the convergence of $(T-\mu) f_{n}(\mu)$ to zero in $\mathcal{E}(O, X)$ yields to the convergence of f_{n} to zero in $\mathcal{E}(O, X)$. We define by

$$
\sigma_{(\beta)_{\epsilon}}(T)=\left\{\lambda \in \mathbb{C}: T \text { fails to satisfy }(\beta)_{\epsilon} \text { at } \lambda\right\} .
$$

We say that T satisfies property $(\beta)_{\epsilon}$ provided that $\sigma_{(\beta)_{\epsilon}}(T)=\phi$.
We shall also need some closely related notions. The operator T is said to satisfy Bishop's property (β) at $\lambda \in \mathbb{C}$ if there exists $r>0$ such that for every open subset $U \subseteq D(\lambda, r)$ and for any sequence $\left(f_{n}\right)_{n} \subseteq \mathcal{E}(U, X)$, if $\lim _{n \longrightarrow \infty}(T-$ $\mu) f_{n}(\mu)=0$ in $\mathcal{E}(U, X)$, then $\lim _{n \rightarrow \infty} f_{n}(\mu)=0$ in $\mathcal{E}(U, X)$, where $D(\lambda, r)$ is the open disc centred at $\lambda \in \mathbb{C}$ with radius $r>0$.

We define by

$$
\sigma_{\beta}(T)=\{\lambda \in \mathbb{C}: T \text { fails to satisfy }(\beta) \text { at } \lambda\}
$$

An operator $T \in L(X)$ is said to have Bishop's property (β) provided that $\sigma_{\beta}(T)=\phi$. Obviously, property (β) implies that T has the single valuedextension property. Furthermore, the operator T is said to have the decomposition property (δ) if its dual T^{*} satisfies Bishop's property (β). In [1], Albrecht and Eschmeier proved that thr properties (β) and (δ) are dual to each other in the sense that an operator $T \in L(X)$ satisfies (β) if and only if the adjoint operator T^{*} on the dual space X^{*} satisfies (δ).

In this note, we proved that if $T \in L(X), S \in L(Y), A \in L(X, Y)$ and $B \in L(Y, X)$ such that $S A=A T, T B=B S, A B=S$ and $B A=T$, then S and T shares the same local spectral properties SVEP, Bishop's property (β),
property $(\beta)_{\epsilon}$, property (δ) and subscalarity. Moreover, the operators $\lambda I-T$ and $\lambda I-S$ have many basic operator properties in common.

2. Local spectral properties of linear operators

For $T \in L(X), S \in L(Y)$ and for positive integer $n \in \mathbb{Z}$, we consider the space

$$
\mathcal{I}^{n}(S, T):=\left\{A \in L(X, Y): C(S, T)^{n}(A)=0\right\}
$$

where $C(S, T)$ is the n-th composition of the map $C(S, T)(A):=S A-A T$. The interest of the space $\mathcal{I}^{n}(S, T)$ stems from the fact that it contain many significant classes of maps

Example 1. If \mathcal{A} and \mathcal{B} are semi-simple Banach algebras and $\theta: \mathcal{A} \longrightarrow \mathcal{B}$ an algebra homomorphism then $\theta \in I(\theta(a), a)$ for any $a \in \mathcal{A}$ in the sense that $\theta(a) \theta(x)-\theta(a x)=0$ for all $x \in \mathcal{A}$, i.e. $\theta L_{a}=L_{\theta(a)} \theta$ where $L_{a} x:=a x$ for all $x \in \mathcal{A}$.

It is easy to see that if \mathcal{A} is a Banach algebra and \mathcal{M} is a commutatve Banach \mathcal{A}-module, that is, \mathcal{M} is an \mathcal{A}-bimodule and $m a=a m$ for all $a \in \mathcal{A}, m \in \mathcal{M}$ and if $D: \mathcal{A} \longrightarrow \mathcal{M}$ is a module derivation, i.e., D is a linear map obeying the differentiation rule $D(x y)=x D Y+D(x) y$ for all $x, y \in \mathcal{A}$ then $C(a, a) D \in$ $I(a, a)$ for every $a \in \mathcal{A}$ as an easy calculation will show.
Example 2. Let $S: X \rightarrow Y$ and $R: Y \rightarrow X$ be bounded linear operators. Then $S \in I(\lambda I-S R, \lambda I-R S)$ and $R \in I(\lambda I-R S, \lambda I-S R)$ for every complex number $\lambda \in \mathbb{C}$. In particular, $S \in I(S R, R S)$ and $R \in I(R S, S R)$, since $R S \in L(X)$ and $S R \in L(Y)$.
Example 3. Let $T \in L(\mathcal{H})$ be a bounded operator on some Hilbert space \mathcal{H} and $U|T|$ be its polar decomposition, where $|T|:=\left(T T^{*}\right)^{\frac{1}{2}}$ and U is the approximate partial isometry. The generalized Aluthge transform associated with T and $s, t \geq 0$, is defined by

$$
T(s, t):=|T|^{s} U|T|^{t} .
$$

In the case $s=t=\frac{1}{2}$, the operator

$$
\tilde{T}=|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}}
$$

is called the Aluthge transform of T and was first considered by A. Aluthge, see more details [12] and [13]. It is easy to see that for all $0 \leq r \leq t$

$$
\left.\left|T{ }^{s} U\right| T\right|^{t-r} \in I(T(s, t), T(s+r, t-r))
$$

and

$$
|T|^{r} \in I(T(s+r, t-r), T(s, t)) .
$$

Proposition 2.1. Let $T \in L(X), S \in L(Y), A \in L(X, Y)$ and $B \in L(Y, X)$ for which $A \in \mathcal{I}(S, T)$ and $B \in \mathcal{I}(T, S)$. Assume that $A B=S$ and $B A=T$. Then T has the Bishop's property (β) at $\lambda \in \mathbb{C}$ if and only if S has the Bishop's property (β) at $\lambda \in \mathbb{C}$. Moreover, T has the Bishop's property (β) if and only if S has the Bishop's property (β).
Proof. Let $\lambda \in \mathbb{C} \backslash \sigma_{\beta}(S)$ and let $\left(f_{n}\right)_{n}$ be a sequence of X-valued analytic functions in a neighborhood of λ such that
(1) $\quad \lim _{n \rightarrow \infty}(T-\mu) f_{n}(\mu)=0 \quad$ in $\mathcal{E}(V(\lambda), X)$.

Then $0=\lim _{n \rightarrow \infty} A(T-\mu) f_{n}(\mu)=\lim _{n \rightarrow \infty}(S-\mu) A f_{n}(\mu)$ in $\mathcal{E}(V(\lambda), Y)$. It follows that
(2) $\quad \lim _{n \rightarrow \infty} A f_{n}(\mu)=0 \quad$ in $\mathcal{E}(V(\lambda), Y)$,

Since $\lambda \notin \sigma_{\beta}(S)$. From (2), we have

$$
0=\lim _{n \rightarrow \infty} B A f_{n}(\mu)=\lim _{n \rightarrow \infty} T f_{n}(\mu) \quad \text { in } \mathcal{E}(V(\lambda), X) .
$$

In equation (1), we deduce that $\left(\mu f_{n}(\mu)\right)_{n}$ converges to 0 on compact sets. Now since f_{n} are analytic, the maximum modulus priciple implies $\left(f_{n}\right)_{n}$ converges to 0 on compact sets. Thus $\lambda \in \mathbb{C} \backslash \sigma_{\beta}(T)$. The reverse implication is obtained by symmetry.

Corollary 2.2. Let $T \in L(X), S \in L(Y), A \in L(X, Y)$ and $B \in L(Y, X)$ for which $A \in \mathcal{I}(S, T)$ and $B \in \mathcal{I}(T, S)$. Assume that $A B=S$ and $B A=T$. Then T has the SVEP at $\lambda \in \mathbb{C}$ if and only if S has the SVEP at $\lambda \in \mathbb{C}$.
Corollary 2.3. Let $S: X \longrightarrow Y$ and $R: Y \longrightarrow X$ be bounded linear operators. Then for every complex numbers $\lambda \in \mathbb{C}, R S-\lambda I$ has the SVEP if and only if $S R-\lambda I$ has $S V E P$. In particular, RS has the SVEP if and only if $S R$ has SVEP.

We denote by $C^{\infty}(\mathbb{C})$ the Fréchet algebra of all infinitely differentiable complex valued functions defined on the complex plane \mathbb{C} with the topology of uniform convergence of every derivative on each compact subset of \mathbb{C}. An operator $T \in L(X)$ is called a generalized scalar operator if there exists a continuous algebra homomorphism $\Phi: C^{\infty}(\mathbb{C}) \rightarrow L(X)$ satisfying $\Phi(1)=I$, the identity operator on X, and $\Phi(z)=T$ where z denotes the identity function on \mathbb{C}. Such a continuous function Φ is in fact an operator valued distribution and it is called a spectral distribution for T, see [11], for more details.

An operator $T \in L(X)$ is said to be subscalar if T is similar to the restriction of a generalized scalar operator to one of its closed invariant subspaces. It follows from [11, Proposition 2.4.9] that all hyponormal and, more generally, all M-hyponormal operators are subscalar.

The following lemma is need.

Lemma 2.4. Let O be an open set and $\left(f_{n}\right)_{n}$ be a sequence in $\mathcal{E}(O, X)$ such that $\left(\mu f_{n}(\mu)\right)_{n}$ converges to zero in $\mathcal{E}(O, X)$. Then $\left(f_{n}\right)_{n}$ converges to zero in $\mathcal{E}(O, X)$.

Proof. see [3, Lemma 2.1].
The following result generalizes [3, Theorem 2.1].
Theorem 2.5. Let $T \in L(X), S \in L(Y), A \in L(X, Y)$ and $B \in L(Y, X)$ for which $A \in \mathcal{I}(S, T)$ and $B \in \mathcal{I}(T, S)$. Assume that $A B=S$ and $B A=T$. Then $\sigma_{(\beta)_{\epsilon}}(T)=\sigma_{(\beta)_{\epsilon}}(S)$. In particular, T is subscalar if and only if S is subscalar.

Proof. Suppose that $\lambda \in \mathbb{C} \backslash \sigma_{(\beta)_{\epsilon}}(S)$. Then there exists O a neighborhood of λ such that $O \cap \sigma_{(\beta)_{\epsilon}}(S)=\phi$. If $\left(f_{n}\right)_{n}$ is any sequence in $\mathcal{E}(O, X)$ such that $(T-\mu) f_{n}(\mu)$ converges to zero in $\mathcal{E}(O, X)$, then

$$
0=\lim _{n \rightarrow \infty} A(T-\mu) f_{n}(\mu)=\lim _{n \rightarrow \infty}(S-\mu) A f_{n}(\mu)
$$

and hence $\lim _{n \rightarrow \infty} A f_{n}(\mu)=0$ in $\mathcal{E}(O, Y)$. Thus we have

$$
0=\lim _{n \rightarrow \infty} B A f_{n}(\mu)=\lim _{n \rightarrow \infty} T f_{n}(\mu) .
$$

It follows that $\left(\mu f_{n}(\mu)\right)_{n}$ converges to zero in $\mathcal{E}(O, X)$. By Lemma 2.4, we have $\left(f_{n}\right)_{n}$ converges to zero in $\mathcal{E}(O, X)$. Hence $\lambda \in \mathbb{C} \backslash \sigma_{(\beta)_{\epsilon}}(T)$. The reverse implication is obtained by symmetry.

The following corollaries are immediate consequences of Theorem 2.5
Corollary 2.6. Let $S: X \longrightarrow Y$ and $R: Y \longrightarrow X$ be bounded linear operators. Then $\sigma_{(\beta)_{\epsilon}}(R S)=\sigma_{(\beta)_{\epsilon}}(S R)$. In particular, $R S$ is subscalar if and only if $S R$ is subscalar.

Let $T \in L(\mathcal{H})$ be a bounded operator on some Hilbert space \mathcal{H} and $U|T|$ be its polar decomposition, and $U|T|$ be its polar decomposition, where $|T|:=$ $\left(T T^{*}\right)^{\frac{1}{2}}$ and U is the approximate partial isometry. For $r \leq t$, let $R=|T|^{r}$ and $S=|T|^{s} U|T|^{t-r}$. Then $S R=T(s, t)$ and $R S=T(s+r, t-r)$. It follows that $T(s, t)$ and $T(s+r, t-r)$ and in particular \tilde{T} and T almost have the same local spectral properties.

Corollary 2.7. Let $T \in L(\mathcal{H}), s \geq 0$ and $0 \leq r \leq t$. Then $T(s, t)$ has the property (β) (resp. (δ) or subscalar) if and only if $T(s+r, t-r)$ has the property (β) (resp. (δ) or subscalar).

The following result generalizes [3, Proposition 3.1].

Proposition 2.8. Let $T \in L(X), S \in L(Y), A \in L(X, Y)$ and $B \in L(Y, X)$ for which $A \in \mathcal{I}(S, T)$ and $B \in \mathcal{I}(T, S)$. Assume that $A B=S$ and $B A=T$. Then
(a) $\sigma_{S}(A x) \subseteq \sigma_{T}(x) \subseteq \sigma_{S}(A x) \cup\{0\}$ for every $x \in X$. In particular, if A is an injective then $\sigma_{T}(x)=\sigma_{S}(A x)$ for every $x \in X$.
(b) $\sigma_{T}(B y) \subseteq \sigma_{S}(y) \subseteq \sigma_{T}(B y) \cup\{0\}$ for every $y \in Y$. In particular, if B is an injective then $\sigma_{S}(y)=\sigma_{T}(B y)$ for every $y \in Y$.

Proof. (a) Let $\lambda \notin \sigma_{T}(x)$ and $x(\mu)$ be an X -valued analytic function in a neighborhood O of λ such that $(T-\mu) x(\mu)=x$ for every $\mu \in O$. Then we have

$$
A x=A(T-\mu) x(\mu)=(S-\mu) A x(\mu) \text { for all } x \in O
$$

Since $S A=A T$, and hence $\lambda \notin \sigma_{S}(A x)$. To show the second inclusion, let $\lambda \notin$ $\sigma_{S}(A x) \cup\{0\}$ and $y(\mu)$ be an Y-valued analytic function on an open neighborhood $O(0 \notin O)$ of λ, such that

$$
(S-\mu) y(\mu)=A x
$$

for all $\mu \in O$. Thus $T x=B A x=B(S-\mu) y(\mu)=(T-\mu) B y(\mu)$, since $B A=T$ and $T B=B S$, and hence $T(B y(\mu)-x)=\mu B y(\mu)$. We define $z: O \rightarrow X$ by

$$
z(\mu):=\frac{1}{\mu}(B y(\mu)-x) .
$$

Then clearly, $x=(T-\mu) z(\mu)$ for every $\mu \in O$, and thus $\lambda \notin \sigma_{T}(x)$.
(b) It suffices to consider the case $\lambda=0$, since $\sigma_{T+\lambda I}(x)=\sigma_{T}(x)+\lambda$ for every $\lambda \in \mathbb{C}$ and every $x \in X$. Suppose that $0 \in \sigma_{S}(A x)$. Then, by (a) $\sigma_{T}(x)=\sigma_{S}(A x)$ for every $x \in X$. Suppose that $0 \notin \sigma_{S}(A x)$ and let $y(\mu)$ be an Y-valued analytic function in a neighborhood U of 0 such that $(S-\mu) y(\mu)=A x$ for every $\mu \in U$. From the injectivity of A, it follows that $x=B y(0)$, since $A x=S y(0)=A B y(0)$. Moreover, we have $\mu y(\mu)=S y(\mu)-A x=A(B y(\mu)-x)$ and so

$$
y(\mu)=A\left[\frac{1}{\mu}(B y(\mu)-x)\right]
$$

for every $\mu \in U \backslash\{0\}$. Set $z(\mu):=\frac{1}{\mu}(B y(\mu)-x)$ if $\mu \neq 0$, and $z(\mu):=B y^{\prime}(0)$ if $\mu=0$. It is easily check that $A[x-(T-\mu) z(\mu)]=0$ for every $\mu \in U$. Since A is injective, we get

$$
(T-\mu) z(\mu)=x
$$

for every $\mu \in U$, and hence $0 \notin \sigma_{T}(x)$. The theorem is hence proved.
We need the following elementary lemma.

Lemma 2.9. Let $T \in L(X), S \in L(Y), A \in L(X, Y)$ and $B \in L(Y, X)$ for which $A \in \mathcal{I}(S, T)$ and $B \in \mathcal{I}(T, S)$. Assume that $A B=S$ and $B A=T$. Then
(a) $A(\operatorname{Ker}(I-T))=\operatorname{Ker}(I-S)$ and $B(\operatorname{Ker}(I-S))=\operatorname{Ker}(I-T)$.
(b) $\operatorname{Ker}(A) \cap \operatorname{Ker}(I-T)=\{0\}$ and $\operatorname{Ker}(B) \cap \operatorname{Ker}(I-S)=\{0\}$.

Proof. (a) If $x \in \operatorname{Ker}(I-T)$ then $T x=x$, Thus $A x=A T x=S A x$, and hence $A x \in \operatorname{Ker}(I-S)$. To verify the opposite inclusion, suppose $y \in \operatorname{Ker}(I-S)$. Arguing as above, we have $B(\operatorname{Ker}(I-S)) \subseteq \operatorname{Ker}(I-T)$. Therefore $B y \in$ $\operatorname{Ker}(I-T)$, and thus $y=S y \in S(\operatorname{Ker}(I-T))$. This proves (a).
(b) If $x \in \operatorname{Ker}(A) \cap \operatorname{Ker}(I-T)$, then $A x=0$, and $T x=x$ and hence $x=T x=$ $B A x=0$, since $B A=T$. This proves (b).

As usual, we use $\sigma_{p}, \sigma_{s u r}, \sigma_{c o m}, \sigma_{a p}, \sigma_{r}$ and σ_{c} to denote the point, surjectivity, compression, approximate point, residual and continuous spectrum, respectively. Thus
$\sigma_{p}(T):=\{\lambda \in \mathbb{C}: T-\lambda I$ is not injective $\}$,
$\sigma_{\text {sur }}(T):=\{\lambda \in \mathbb{C}:(T-\lambda I) X \neq X\}$,
$\sigma_{\text {com }}(T):=\{\lambda \in \mathbb{C}:(T-\lambda I)(X)$ is not dense in $X\}$,
$\sigma_{r}(T):=\{\lambda \in \mathbb{C}: T-\lambda I$ is injective and $(T-\lambda I)(X)$ is not dense in $X\}$,
$\sigma_{c}(T):=\sigma(T) \backslash\left\{\sigma_{p}(T) \cup \sigma_{r}(T)\right\}$.

It is clear that $\sigma_{\text {sur }}(T)$ is compact with

$$
\partial \sigma(T) \subseteq \sigma_{\text {sur }}(T)=\sigma_{a p}\left(T^{*}\right) \subseteq \sigma(T)
$$

Furthermore, it is clear that $\sigma_{\text {com }}(T)=\sigma_{p}\left(T^{*}\right), \sigma_{r}(T)=\sigma_{c o m}(T) \backslash \sigma_{p}(T)$ and $\sigma_{c}(T)=\sigma(T) \backslash\left\{\sigma_{p}(T) \cup \sigma_{\text {com }}(T)\right\}$, see [4] and [11] for more details.

The following result generalizes [2, Theorem 3].
Theorem 2.10. Let $T \in L(X), S \in L(Y), A \in L(X, Y)$ and $B \in L(Y, X)$ for which $A \in \mathcal{I}(S, T)$ and $B \in \mathcal{I}(T, S)$. Assume that $A B=S$ and $B A=T$. Then
(a) $\sigma_{p}(T) \backslash\{0\}=\sigma_{p}(S) \backslash\{0\}$.
(b) $\sigma_{\text {com }}(T) \backslash\{0\}=\sigma_{\text {com }}(S) \backslash\{0\}$.
(c) $\sigma_{a p}(T) \backslash\{0\}=\sigma_{a p}(S) \backslash\{0\}$.
(d) $\sigma_{\text {sur }}(T) \backslash\{0\}=\sigma_{\text {sur }}(S) \backslash\{0\}$.
(e) $\sigma_{r}(T) \backslash\{0\}=\sigma_{r}(S) \backslash\{0\}$.
(f) $\sigma(T) \backslash\{0\}=\sigma(S) \backslash\{0\}$.
(g) $\sigma_{c}(T) \backslash\{0\}=\sigma_{c}(S) \backslash\{0\}$.

Proof. (a) Since $A B=S$ and $B A=T$, we have

$$
\begin{aligned}
\lambda \notin \sigma_{p}(T) \backslash\{0\} & \Leftrightarrow \lambda \\
& =0 \text { or } \lambda I-T \text { is injective } \\
& \Leftrightarrow \lambda=0 \text { or } I-\lambda^{-1} T \text { is injective } \\
& \Leftrightarrow \lambda=0 \text { or } \operatorname{Ker}\left(I-\lambda^{-1} T\right)=\{0\} \\
& \left.\Leftrightarrow \lambda=0 \text { or } A\left(\operatorname{Ker}\left(I-\lambda^{-1} T\right)\right)=\operatorname{Ker}\left(I-\lambda^{-1} S\right)\right)=\{0\} \\
& \Leftrightarrow \lambda \notin \sigma_{p}(S) \backslash\{0\} .
\end{aligned}
$$

(b) By passing to duals, $\sigma_{p}\left(T^{*}\right) \backslash\{0\}=\sigma_{p}\left(S^{*}\right) \backslash\{0\}$. Since $\sigma_{\text {com }}(T)=\sigma_{p}\left(T^{*}\right)$, from this and (a), we obtain

$$
\sigma_{\text {com }}(T) \backslash\{0\}=\sigma_{p}\left(T^{*}\right) \backslash\{0\}=\sigma_{p}\left(S^{*}\right) \backslash\{0\}=\sigma_{\text {com }}(S) \backslash\{0\} .
$$

(c) Assume that $\lambda \in \sigma_{a p}(T) \backslash\{0\}$. Then there exists $\left\{x_{n}\right\} \subseteq X,\left\|x_{n}\right\|=1$ for all n and $\lim _{n \rightarrow \infty}\left\|(\lambda I-T) x_{n}\right\|=0$. Since $S A=A T$, we have

$$
\left\|(\lambda I-S) A x_{n}\right\|=\left\|A(\lambda I-T) x_{n}\right\| \leq\|A\|\left\|(\lambda I-T) x_{n}\right\|
$$

and hence $\lim _{n \rightarrow \infty}\left\|(\lambda I-S) A x_{n}\right\|=0$. In fact, $\left\|A x_{n}\right\|$ is bounded away from zero. For if not, $\left\|A x_{n_{k}}\right\| \rightarrow 0$ for some subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$. Then

$$
|\lambda|=|\lambda|\left\|x_{n_{k}}\right\| \leq\left\|(\lambda I-T) x_{n_{k}}\right\|+\left\|T x_{n_{k}}\right\| \longrightarrow 0
$$

a contradiction. This proves $\lambda \in \sigma_{a p}(S) \backslash\{0\}$. The reverse implication is obtained by symmetry.
(d) It is clear from (c) that $\sigma_{a p}\left(T^{*}\right) \backslash\{0\}=\sigma_{a p}\left(S^{*}\right) \backslash\{0\}$. Since $\sigma_{\text {sur }}(T)=\sigma_{a p}\left(T^{*}\right)$ for any $T \in L(X)$, we have

$$
\begin{aligned}
\sigma_{\text {sur }}(T) \backslash\{0\} & =\sigma_{a p}\left(T^{*}\right) \backslash\{0\} \\
& =\sigma_{a p}\left(S^{*}\right) \backslash\{0\} \\
& =\sigma_{\text {sur }}(S) \backslash\{0\} .
\end{aligned}
$$

(e) It is clear from the definition $\sigma_{r}(T)$ that $\sigma_{r}(T)=\sigma_{c o m}(T) \backslash \sigma_{p}(T)$. From (a) and (b), we have

$$
\begin{aligned}
\sigma_{r}(T) \backslash\{0\} & =\sigma_{\text {com }}(T) \backslash\left(\sigma_{p}(T) \cup\{0\}\right) \\
& =\left(\sigma_{\text {com }}(T) \backslash\{0\}\right) \backslash\left(\sigma_{p}(T) \backslash\{0\}\right) \\
& =\left(\sigma_{\text {com }}(S) \backslash\{0\}\right) \backslash\left(\sigma_{p}(S) \backslash\{0\}\right) \\
& =\sigma_{\text {com }}(S) \backslash\left(\sigma_{p}(S) \cup\{0\}\right) \\
& =\sigma_{r}(S) \backslash\{0\} .
\end{aligned}
$$

(f) It is clear that $\sigma(T)=\sigma_{p}(T) \cup \sigma_{\text {sur }}(T)$. From (a) and (d), we have

$$
\begin{aligned}
\sigma(T) \backslash\{0\} & =\left(\sigma_{p}(T) \cup \sigma_{\text {sur }}(T)\right) \backslash\{0\} \\
& =\left(\sigma_{p}(T) \backslash\{0\}\right) \cup\left(\sigma_{\text {sur }}(T) \backslash\{0\}\right) \\
& =\left(\sigma_{p}(S) \backslash\{0\}\right) \cup\left(\sigma_{\text {sur }}(S) \backslash\{0\}\right) \\
& =\left(\sigma_{p}(S) \cup \sigma_{\text {sur }}(S)\right) \backslash\{0\} \\
& =\sigma(S) \backslash\{0\} .
\end{aligned}
$$

(g) It is clear from the definition of continuous spectrum that

$$
\sigma_{c}(T)=\sigma(T) \backslash\left(\sigma_{c o m}(T) \cup \sigma_{p}(T)\right)
$$

From (a), (b) and (f), we obtain

$$
\begin{aligned}
\sigma_{c}(T) \backslash\{0\} & =\sigma(T) \backslash\left(\sigma_{\text {com }}(T) \cup \sigma_{p}(T) \cup\{0\}\right) \\
& =(\sigma(T) \backslash\{0\}) \backslash\left(\left(\sigma_{\text {com }}(T) \backslash\{0\}\right) \cup\left(\sigma_{p}(T) \backslash\{0\}\right)\right) \\
& =(\sigma(S) \backslash\{0\}) \backslash\left(\left(\sigma_{\text {com }}(S) \backslash\{0\}\right) \cup\left(\sigma_{p}(S) \backslash\{0\}\right)\right) \\
& =\sigma(S) \backslash\left(\sigma_{\text {com }}(S) \cup \sigma_{p}(S) \cup\{0\}\right) \\
& =\sigma_{c}(S) \backslash\{0\} .
\end{aligned}
$$

This proves theorem.
The following corollaries are immediate consequences of Theorem 2.5
Corollary 2.11. Let $S \in L(X, Y)$ and $R \in L(Y, X)$. Then

$$
\sigma(S R) \backslash\{0\}=\sigma(R S) \backslash\{0\} \quad \text { and } \sigma_{\Omega}(S R) \backslash\{0\}=\sigma_{\Omega}(R S) \backslash\{0\}
$$

where σ_{Ω} denotes each one of $\sigma, \sigma_{p}, \sigma_{\text {com }}, \sigma_{a p}, \sigma_{a p}, \sigma_{s u r}, \sigma_{r}$, and σ_{c}.

References

1. E. Albrecht and J. Eschmeier, Functional models and local spectral theory, Preprint University of Saarbrucken and University of Münster (1991).
2. B. A. Barnes, Common operator properties of the linear operators $R S$ and $S R$, Proc. Amer. Math. Soc. Vol. 126(4) (1998), 1055-1061.
3. C. Benhida and E. H. Zerouali, Local spectral theory of linear operators $R S$ and $S R$, Integral Equations Operator Theory 54 (2006), 1-8.
4. S. K. Berberian, Lectures in functional analysis and operator theory, Springer-Verlag, 1973, New York.
5. E. Bishop, A duality theory for arbitrary operators, Pacific J. Math. 9 (1959), 379-397.
6. Lin Chen, Yan Zikun and Ruan Yingbin, Common operator properties of operators $R S$ and $S R$ and p-Hyponormal operators, Integral Equations Operator Theory 43 (2002), 313-325.
7. Lin Chen and Yan Zikun, Bishop's property (β) and essential spectra of quasisimilar operators, Proc. Amer. Math. Soc. Vol. 128 (2) (1999), 485-493.
8. I. Colojoarvă and C. Foiás, Theory of generalized spectral operators, Gorden and Breach, 1968, New York.
9. J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. Vol. 58(1), (1975), 161-169.
10. K. B. Laursen, M. M. Miller and M.M. Neumann, Local spectral properties of commutators, Proceedings of the Edinburgh Math. Soc. 38 (1995), 313-329
11. K. B. Laursen and M. M. Neumann, An Introduction to local spectral theory, Clarendon Press, 2000, Oxford.
12. M. Martin and M. Putinar, Lectures on hyponormal operators, Operator Theory, Advances and Applications, No. 39. (1989), Birkhäuser, Basel.
13. M. Putinar, Hyponormal operators are subscalar, J. Operator Theory, 12 (1984), 385-395.

Jong-Kwang Yoo received his BS degree from Chunnam National University and received his MS and Ph. D. degree from Sogang University under the direction of Professor Jae-Chul Rho. He is a professor at Chodang University. His research interests focus on decomposable operators and local spectral theory.

Department of Liberal Arts and Science, Chodang University, Muan 534-800, Korea e-mail: jkyoo@chodang.ac.kr

Heung Joon Oh received his BS, MS and Ph. D. degree from Myongji University under the direction of Professor Gi-iK Kim. He is a professor at Chodang University. His research interests focus on the commutative ring theory and local spectral theory.
Department of Liberal Arts and Science, Chodang University, Muan 534-800, Korea e-mail: hjoh@chodang.ac.kr

[^0]: Received July 9, 2010. Revised July 26, 2010. Accepted August 20, 2010. * Corresponding author.
 (c) 2011 Korean SIGCAM and KSCAM.

