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BISHOP’S PROPERTY (β) AND SPECTRAL

INCLUSIONS ON BANACH SPACES
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Abstract. Let T ∈ L(X), S ∈ L(Y ), A ∈ L(X,Y ) and B ∈ L(Y,X) such that
SA = AT, TB = BS, AB = S and BA = T. Then S and T shares the same local
spectral properties SVEP, Bishop’s property (β), property (β)ε, property (δ) and
and subscalarity. Moreover, the operators λI − T and λI − S have many basic
operator properties in common.
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1. Introduction

Let X be a complex Banach space, and let L(X) be the Banach algebra
of all bounded linear operators on X. For an operator T ∈ L(X), σ(T ) and
ρ(T ) denotes the spectrum and resolvent set of T and let Lat(T ) stand for the
collection of all T−invariant closed linear subspaces of X, and for Y ∈ Lat(T ),
T |Y denotes the restriction of T on Y. For T ∈ L(X), we denote by

RT : λ ∈ ρ(T ) → RT (λ) = (T − λI)−1 ∈ L(X)

its resolvent map. For an operator T ∈ L(X) and arbitrary x ∈ X, we define
f : ρ(T ) → X by

f(λ) := RT (λ)x.

Then f may have analytic extensions, solutions of the equation (T −λ)f(λ) = x.
If for every x ∈ X any two extensions of RT (λ)x agree on their common do-
main, T ∈ L(X) is said to have the single-valued extension property(abbreviated
SVEP). In this case, let ρT (x) be the maximal domain of such extensions. The
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set σT (x) := C \ ρT (x) is called the local spectrum of T at x. Evidently, σT (x) is
closed with σT (x) ⊆ σ(T ). The resolvent set ρ(T ) is always a subset of ρT (x), so
the analytic solutions occurring in the definition of the local resolvent set may
be thought of as local extensions of the function (T − λ)−1x.

An operator T ∈ L(X) is said to have the single-valued extension property at
λ0, if for every open neighborhood U of λ0, the only analytic function f : U → X
which satisfies the equation (λI−T )f(λ) = 0 for all λ ∈ U is the function f ≡ 0.
In fact, the operator T has the SVEP if and only if T has SVEP at every λ ∈ C.
It is obvious that T has the SVEP if and only if the zero function is the only
analytic function that satisfies (T − λ)f(λ) = 0. By the Liouville theorem, it
is clear that T has the SVEP if and only if for any non-zero x ∈ X, we have
σT (x) 6= φ, see [9] and [11] for more details.

Let E(U,X) be the Fréchet algebra of all infinitely differentiable X-valued
functions on U ⊆ C endowed with the topology of uniform convergence on
compact subsets of U of all derivtives.

The operator T ∈ L(X) is said to have property (β)ε at λ ∈ C if there exists
U a neighborhood of λ such that for each open set O ⊆ U and for any sequence
(fn)n of X−valued functions in E(O,X) the convergence of (T −µ)fn(µ) to zero
in E(O,X) yields to the convergence of fn to zero in E(O,X). We define by

σ(β)ε(T ) = {λ ∈ C : T fails to satisfy (β)ε atλ }.

We say that T satisfies property (β)ε provided that σ(β)ε(T ) = φ.
We shall also need some closely related notions. The operator T is said to

satisfy Bishop’s property (β) at λ ∈ C if there exists r > 0 such that for every
open subset U ⊆ D(λ, r) and for any sequence (fn)n ⊆ E(U,X), if limn−→∞(T −
µ)fn(µ) = 0 in E(U,X), then limn−→∞ fn(µ) = 0 in E(U,X), where D(λ, r) is
the open disc centred at λ ∈ C with radius r > 0.

We define by

σβ(T ) = {λ ∈ C : T fails to satisfy(β) atλ }.

An operator T ∈ L(X) is said to have Bishop’s property (β) provided that
σβ(T ) = φ. Obviously, property (β) implies that T has the single valued-
extension property. Furthermore, the operator T is said to have the decomposi-
tion property (δ) if its dual T ∗ satisfies Bishop’s property (β). In [1], Albrecht
and Eschmeier proved that thr properties (β) and (δ) are dual to each other
in the sense that an operator T ∈ L(X) satisfies (β) if and only if the adjoint
operator T ∗ on the dual space X∗ satisfies (δ).

In this note, we proved that if T ∈ L(X), S ∈ L(Y ), A ∈ L(X,Y ) and
B ∈ L(Y,X) such that SA = AT, TB = BS, AB = S and BA = T, then S
and T shares the same local spectral properties SVEP, Bishop’s property (β),
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property (β)ε, property (δ) and subscalarity. Moreover, the operators λI − T
and λI − S have many basic operator properties in common.

2. Local spectral properties of linear operators

For T ∈ L(X), S ∈ L(Y ) and for positive integer n ∈ Z, we consider the space
In(S, T ) := {A ∈ L(X,Y ) : C(S, T )n(A) = 0},

where C(S, T ) is the n-th composition of the map C(S, T )(A) := SA−AT. The
interest of the space In(S, T ) stems from the fact that it contain many significant
classes of maps

Example 1. If A and B are semi-simple Banach algebras and θ : A −→ B
an algebra homomorphism then θ ∈ I(θ(a), a) for any a ∈ A in the sense that
θ(a)θ(x) − θ(ax) = 0 for all x ∈ A, i.e. θLa = Lθ(a)θ where Lax := ax for all
x ∈ A.

It is easy to see that if A is a Banach algebra and M is a commutatve Banach
A−module, that is, M is an A−bimodule and ma = am for all a ∈ A,m ∈ M
and if D : A −→ M is a module derivation, i.e., D is a linear map obeying
the differentiation rule D(xy) = xDY +D(x)y for all x, y ∈ A then C(a, a)D ∈
I(a, a) for every a ∈ A as an easy calculation will show.

Example 2. Let S : X → Y and R : Y → X be bounded linear operators. Then
S ∈ I(λI−SR, λI−RS) and R ∈ I(λI−RS, λI−SR) for every complex number
λ ∈ C. In particular, S ∈ I(SR,RS) and R ∈ I(RS, SR), since RS ∈ L(X) and
SR ∈ L(Y ).

Example 3. Let T ∈ L(H) be a bounded operator on some Hilbert spaceH and

U |T | be its polar decomposition, where |T | := (TT ∗)
1
2 and U is the approximate

partial isometry. The generalized Aluthge transform associated with T and
s, t ≥ 0, is defined by

T (s, t) := |T |sU |T |t.
In the case s = t = 1

2 , the operator

T̃ = |T | 12U |T | 12

is called the Aluthge transform of T and was first considered by A. Aluthge, see
more details [12] and [13]. It is easy to see that for all 0 ≤ r ≤ t

|T |sU |T |t−r ∈ I(T (s, t), T (s+ r, t− r))

and
|T |r ∈ I(T (s+ r, t− r), T (s, t)).
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Proposition 2.1. Let T ∈ L(X), S ∈ L(Y ), A ∈ L(X,Y ) and B ∈ L(Y,X)
for which A ∈ I(S, T ) and B ∈ I(T, S). Assume that AB = S and BA = T.
Then T has the Bishop’s property (β) at λ ∈ C if and only if S has the Bishop’s
property (β) at λ ∈ C. Moreover, T has the Bishop’s property (β) if and only if
S has the Bishop’s property (β).

Proof. Let λ ∈ C \ σβ(S) and let (fn)n be a sequence of X-valued analytic
functions in a neighborhood of λ such that

(1) lim
n→∞

(T − µ)fn(µ) = 0 in E(V (λ), X).

Then 0 = limn→∞ A(T − µ)fn(µ) = limn→∞(S − µ)Afn(µ) in E(V (λ), Y ). It
follows that

(2) lim
n→∞

Afn(µ) = 0 in E(V (λ), Y ),

Since λ /∈ σβ(S). From (2), we have

0 = lim
n→∞

BAfn(µ) = lim
n→∞

Tfn(µ) in E(V (λ), X).

In equation (1), we deduce that (µfn(µ))n converges to 0 on compact sets. Now
since fn are analytic, the maximum modulus priciple implies (fn)n converges to
0 on compact sets. Thus λ ∈ C \ σβ(T ). The reverse implication is obtained by
symmetry. ¤
Corollary 2.2. Let T ∈ L(X), S ∈ L(Y ), A ∈ L(X,Y ) and B ∈ L(Y,X) for
which A ∈ I(S, T ) and B ∈ I(T, S). Assume that AB = S and BA = T. Then
T has the SVEP at λ ∈ C if and only if S has the SVEP at λ ∈ C.
Corollary 2.3. Let S : X −→ Y and R : Y −→ X be bounded linear operators.
Then for every complex numbers λ ∈ C, RS − λI has the SVEP if and only
if SR − λI has SVEP. In particular, RS has the SVEP if and only if SR has
SVEP.

We denote by C∞(C) the Fréchet algebra of all infinitely differentiable com-
plex valued functions defined on the complex plane C with the topology of uni-
form convergence of every derivative on each compact subset of C. An operator
T ∈ L(X) is called a generalized scalar operator if there exists a continuous
algebra homomorphism Φ : C∞(C) → L(X) satisfying Φ(1) = I, the identity
operator on X, and Φ(z) = T where z denotes the identity function on C. Such
a continuous function Φ is in fact an operator valued distribution and it is called
a spectral distribution for T, see [11], for more details.

An operator T ∈ L(X) is said to be subscalar if T is similar to the restriction
of a generalized scalar operator to one of its closed invariant subspaces. It
follows from [11, Proposition 2.4.9] that all hyponormal and, more generally, all
M-hyponormal operators are subscalar.

The following lemma is need.
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Lemma 2.4. Let O be an open set and (fn)n be a sequence in E(O,X) such
that (µfn(µ))n converges to zero in E(O,X). Then (fn)n converges to zero in
E(O,X).

Proof. see [3, Lemma 2.1]. ¤

The following result generalizes [3, Theorem 2.1].

Theorem 2.5. Let T ∈ L(X), S ∈ L(Y ), A ∈ L(X,Y ) and B ∈ L(Y,X) for
which A ∈ I(S, T ) and B ∈ I(T, S). Assume that AB = S and BA = T. Then
σ(β)ε(T ) = σ(β)ε(S). In particular, T is subscalar if and only if S is subscalar.

Proof. Suppose that λ ∈ C \ σ(β)ε(S). Then there exists O a neighborhood of
λ such that O ∩ σ(β)ε(S) = φ. If (fn)n is any sequence in E(O,X) such that
(T − µ)fn(µ) converges to zero in E(O,X), then

0 = lim
n→∞

A(T − µ)fn(µ) = lim
n→∞

(S − µ)Afn(µ)

and hence limn→∞ Afn(µ) = 0 in E(O, Y ). Thus we have

0 = lim
n→∞

BAfn(µ) = lim
n→∞

Tfn(µ).

It follows that (µfn(µ))n converges to zero in E(O,X). By Lemma 2.4, we have
(fn)n converges to zero in E(O,X). Hence λ ∈ C \ σ(β)ε(T ). The reverse impli-
cation is obtained by symmetry. ¤

The following corollaries are immediate consequences of Theorem 2.5

Corollary 2.6. Let S : X −→ Y and R : Y −→ X be bounded linear operators.
Then σ(β)ε(RS) = σ(β)ε(SR). In particular, RS is subscalar if and only if SR is
subscalar.

Let T ∈ L(H) be a bounded operator on some Hilbert space H and U |T |
be its polar decomposition, and U |T | be its polar decomposition, where |T | :=
(TT ∗)

1
2 and U is the approximate partial isometry. For r ≤ t, let R = |T |r and

S = |T |sU |T |t−r. Then SR = T (s, t) and RS = T (s + r, t − r). It follows that

T (s, t) and T (s+ r, t− r) and in particular T̃ and T almost have the same local
spectral properties.

Corollary 2.7. Let T ∈ L(H), s ≥ 0 and 0 ≤ r ≤ t. Then T (s, t) has the
property (β) (resp. (δ) or subscalar) if and only if T (s+r, t−r) has the property
(β) (resp. (δ) or subscalar).

The following result generalizes [3, Proposition 3.1].
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Proposition 2.8. Let T ∈ L(X), S ∈ L(Y ), A ∈ L(X,Y ) and B ∈ L(Y,X) for
which A ∈ I(S, T ) and B ∈ I(T, S). Assume that AB = S and BA = T. Then

(a) σS(Ax) ⊆ σT (x) ⊆ σS(Ax) ∪ {0} for every x ∈ X. In particular, if A is an
injective then σT (x) = σS(Ax) for every x ∈ X.

(b) σT (By) ⊆ σS(y) ⊆ σT (By) ∪ {0} for every y ∈ Y. In particular, if B is an
injective then σS(y) = σT (By) for every y ∈ Y.

Proof. (a) Let λ /∈ σT (x) and x(µ) be an X-valued analytic function in a neigh-
borhood O of λ such that (T − µ)x(µ) = x for every µ ∈ O. Then we have

Ax = A(T − µ)x(µ) = (S − µ)Ax(µ) for all x ∈ O,

Since SA = AT, and hence λ /∈ σS(Ax). To show the second inclusion, let λ /∈
σS(Ax)∪{0} and y(µ) be an Y-valued analytic function on an open neighborhood
O(0 /∈ O) of λ, such that

(S − µ)y(µ) = Ax

for all µ ∈ O. Thus Tx = BAx = B(S − µ)y(µ) = (T − µ)By(µ), since BA = T
and TB = BS, and hence T (By(µ)− x) = µBy(µ). We define z : O → X by

z(µ) :=
1

µ
(By(µ)− x).

Then clearly, x = (T − µ)z(µ) for every µ ∈ O, and thus λ /∈ σT (x).

(b) It suffices to consider the case λ = 0, since σT+λI(x) = σT (x)+λ for every
λ ∈ C and every x ∈ X. Suppose that 0 ∈ σS(Ax). Then, by (a) σT (x) = σS(Ax)
for every x ∈ X. Suppose that 0 /∈ σS(Ax) and let y(µ) be an Y−valued analytic
function in a neighborhood U of 0 such that (S − µ)y(µ) = Ax for every µ ∈ U.
From the injectivity of A, it follows that x = By(0), since Ax = Sy(0) = ABy(0).
Moreover, we have µy(µ) = Sy(µ)−Ax = A(By(µ)− x) and so

y(µ) = A[
1

µ
(By(µ)− x)]

for every µ ∈ U \ {0}. Set z(µ) := 1
µ (By(µ)− x) if µ 6= 0, and z(µ) := By

′
(0) if

µ = 0. It is easily check that A[x− (T − µ)z(µ)] = 0 for every µ ∈ U. Since A is
injective, we get

(T − µ)z(µ) = x

for every µ ∈ U, and hence 0 /∈ σT (x). The theorem is hence proved. ¤

We need the following elementary lemma.
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Lemma 2.9. Let T ∈ L(X), S ∈ L(Y ), A ∈ L(X,Y ) and B ∈ L(Y,X) for
which A ∈ I(S, T ) and B ∈ I(T, S). Assume that AB = S and BA = T. Then

(a) A(Ker(I − T )) = Ker(I − S) and B(Ker(I − S)) = Ker(I − T ).

(b) Ker(A) ∩Ker(I − T ) = {0} and Ker(B) ∩Ker(I − S) = {0}.

Proof. (a) If x ∈ Ker(I − T ) then Tx = x, Thus Ax = ATx = SAx, and hence
Ax ∈ Ker(I − S). To verify the opposite inclusion, suppose y ∈ Ker(I − S).
Arguing as above, we have B(Ker(I − S)) ⊆ Ker(I − T ). Therefore By ∈
Ker(I − T ), and thus y = Sy ∈ S(Ker(I − T )). This proves (a).

(b) If x ∈ Ker(A)∩Ker(I − T ), then Ax = 0, and Tx = x and hence x = Tx =
BAx = 0, since BA = T. This proves (b). ¤

As usual, we use σp, σsur, σcom, σap, σr and σc to denote the point, surjectiv-
ity, compression, approximate point, residual and continuous spectrum, respec-
tively. Thus

σp(T ) := {λ ∈ C : T − λI is not injective},
σsur(T ) := {λ ∈ C : (T − λI)X 6= X},
σcom(T ) := {λ ∈ C : (T − λI)(X) is not dense in X},
σr(T ) := {λ ∈ C : T − λI is injective and (T − λI)(X) is not dense in X},
σc(T ) := σ(T ) \ {σp(T ) ∪ σr(T )}.

It is clear that σsur(T ) is compact with

∂σ(T ) ⊆ σsur(T ) = σap(T
∗) ⊆ σ(T ).

Furthermore, it is clear that σcom(T ) = σp(T
∗), σr(T ) = σcom(T ) \ σp(T ) and

σc(T ) = σ(T ) \ {σp(T ) ∪ σcom(T )}, see [4] and [11] for more details.

The following result generalizes [2, Theorem 3].

Theorem 2.10. Let T ∈ L(X), S ∈ L(Y ), A ∈ L(X,Y ) and B ∈ L(Y,X) for
which A ∈ I(S, T ) and B ∈ I(T, S). Assume that AB = S and BA = T. Then

(a) σp(T ) \ {0} = σp(S) \ {0}.
(b) σcom(T ) \ {0} = σcom(S) \ {0}.
(c) σap(T ) \ {0} = σap(S) \ {0}.
(d) σsur(T ) \ {0} = σsur(S) \ {0}.
(e) σr(T ) \ {0} = σr(S) \ {0}.
(f) σ(T ) \ {0} = σ(S) \ {0}.
(g) σc(T ) \ {0} = σc(S) \ {0}.



466 JONG-KWANG YOO AND HEUNG JOON OH

Proof. (a) Since AB = S and BA = T, we have

λ /∈ σp(T ) \ {0} ⇔ λ = 0 or λI − T is injective

⇔ λ = 0 or I − λ−1T is injective

⇔ λ = 0 or Ker(I − λ−1T ) = {0}
⇔ λ = 0 or A(Ker(I − λ−1T )) = Ker(I − λ−1S)) = {0}
⇔ λ /∈ σp(S) \ {0}.

(b) By passing to duals, σp(T
∗) \ {0} = σp(S

∗) \ {0}. Since σcom(T ) = σp(T
∗),

from this and (a), we obtain

σcom(T ) \ {0} = σp(T
∗) \ {0} = σp(S

∗) \ {0} = σcom(S) \ {0}.

(c) Assume that λ ∈ σap(T ) \ {0}. Then there exists {xn} ⊆ X, ‖xn‖ = 1 for all
n and limn→∞ ‖(λI − T )xn‖ = 0. Since SA = AT, we have

‖(λI − S)Axn‖ = ‖A(λI − T )xn‖ ≤ ‖A‖‖(λI − T )xn‖,

and hence limn→∞ ‖(λI − S)Axn‖ = 0. In fact, ‖Axn‖ is bounded away from
zero. For if not, ‖Axnk

‖ → 0 for some subsequence {xnk
} of {xn}. Then

|λ| = |λ|‖xnk
‖ ≤ ‖(λI − T )xnk

‖+ ‖Txnk
‖ −→ 0,

a contradiction. This proves λ ∈ σap(S)\{0}. The reverse implication is obtained
by symmetry.
(d) It is clear from (c) that σap(T

∗)\{0} = σap(S
∗)\{0}. Since σsur(T ) = σap(T

∗)
for any T ∈ L(X), we have

σsur(T ) \ {0} = σap(T
∗) \ {0}

= σap(S
∗) \ {0}

= σsur(S) \ {0}.

(e) It is clear from the definition σr(T ) that σr(T ) = σcom(T ) \ σp(T ). From (a)
and (b), we have

σr(T ) \ {0} = σcom(T ) \ (σp(T ) ∪ {0})
= (σcom(T ) \ {0}) \ (σp(T ) \ {0})
= (σcom(S) \ {0}) \ (σp(S) \ {0})
= σcom(S) \ (σp(S) ∪ {0})
= σr(S) \ {0}.
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(f) It is clear that σ(T ) = σp(T ) ∪ σsur(T ). From (a) and (d), we have

σ(T ) \ {0} = (σp(T ) ∪ σsur(T )) \ {0}
= (σp(T ) \ {0}) ∪ (σsur(T ) \ {0})
= (σp(S) \ {0}) ∪ (σsur(S) \ {0})
= (σp(S) ∪ σsur(S)) \ {0}
= σ(S) \ {0}.

(g) It is clear from the definition of continuous spectrum that

σc(T ) = σ(T ) \ (σcom(T ) ∪ σp(T )).

From (a), (b) and (f), we obtain

σc(T ) \ {0} = σ(T ) \ (σcom(T ) ∪ σp(T ) ∪ {0})
= (σ(T ) \ {0}) \ ((σcom(T ) \ {0}) ∪ (σp(T ) \ {0}))
= (σ(S) \ {0}) \ ((σcom(S) \ {0}) ∪ (σp(S) \ {0}))
= σ(S) \ (σcom(S) ∪ σp(S) ∪ {0})
= σc(S) \ {0}.

This proves theorem. ¤
The following corollaries are immediate consequences of Theorem 2.5

Corollary 2.11. Let S ∈ L(X,Y ) and R ∈ L(Y,X). Then
σ(SR) \ {0} = σ(RS) \ {0} and σΩ(SR) \ {0} = σΩ(RS) \ {0},

where σΩ denotes each one of σ, σp, σcom, σap, σap, σsur, σr, and σc.
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8. I. Colojoarvă and C. Foiás, Theory of generalized spectral operators, Gorden and Breach,
1968, New York.

9. J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. Vol.
58(1), (1975), 161-169.

10. K. B. Laursen, M. M. Miller and M.M. Neumann, Local spectral properties of commutators,
Proceedings of the Edinburgh Math. Soc. 38 (1995), 313-329

11. K. B. Laursen and M. M. Neumann, An Introduction to local spectral theory, Clarendon
Press, 2000, Oxford.

12. M. Martin and M. Putinar, Lectures on hyponormal operators, Operator Theory, Advances
and Applications, No. 39. (1989), Birkhäuser, Basel.
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