• 제목/요약/키워드: proof theory

검색결과 175건 처리시간 0.023초

EXISTENCE OF THE THIRD POSITIVE RADIAL SOLUTION OF A SEMILINEAR ELLIPTIC PROBLEM ON AN UNBOUNDED DOMAIN

  • Ko, Bong-Soo;Lee, Yong-Hoon
    • 대한수학회지
    • /
    • 제39권3호
    • /
    • pp.439-460
    • /
    • 2002
  • We prove the multiplicity of ordered positive radial solutions for a semilinear elliptic problem defined on an exterior domain. The key argument is to prove the existence of the third solution in presence of two known solutions. For this, we obtain some partial results related to three solutions theorem for certain singular boundary value problems. Proof are mainly based on the upper and lower solutions method and degree theory.

EXISTENCE OF n POSITIVE SOLUTIONS TO SECOND-ORDER MULTI-POINT BOUNDARY VALUE PROBLEM AT RESONANCE

  • Wang, Feng;Zhang, Fang
    • 대한수학회보
    • /
    • 제49권4호
    • /
    • pp.815-827
    • /
    • 2012
  • The existence of $n$ positive solutions is established for second order multi-point boundary value problem at resonance where $n$ is an arbitrary natural number. The proof is based on a theory of fixed point index for A-proper semilinear operators defined on cones due to Cremins.

GENERATION OF CLASS FIELDS BY SIEGEL-RAMACHANDRA INVARIANTS

  • SHIN, DONG HWA
    • 대한수학회지
    • /
    • 제52권5호
    • /
    • pp.907-928
    • /
    • 2015
  • We show in many cases that the Siegel-Ramachandra invariants generate the ray class fields over imaginary quadratic fields. As its application we revisit the class number one problem done by Heegner and Stark, and present a new proof by making use of inequality argument together with Shimura's reciprocity law.

A note on convexity on linear vector space

  • Hong, Suk-Kang
    • Journal of the Korean Statistical Society
    • /
    • 제1권1호
    • /
    • pp.18-24
    • /
    • 1973
  • Study on convexity has been improved in many statistical fields, such as linear programming, stochastic inverntory problems and decision theory. In proof of main theorem in Section 3, M. Loeve already proved this theorem with the $r$-th absolute moments on page 160 in [1]. Main consideration is given to prove this theorem using convex theorems with the generalized $t$-th mean when some convex properties hold on a real linear vector space $R_N$, which satisfies all properties of finite dimensional Hilbert space. Throughout this paper $\b{x}_j, \b{y}_j$ where $j = 1,2,......,k,.....,N$, denotes the vectors on $R_N$, and $C_N$ also denotes a subspace of $R_N$.

  • PDF

ON THE APPROXIMATION BY REGULAR POTENTIALS OF SCHRÖDINGER OPERATORS WITH POINT INTERACTIONS

  • Galtbayar, Artbazar;Yajima, Kenji
    • 대한수학회지
    • /
    • 제57권2호
    • /
    • pp.429-450
    • /
    • 2020
  • We prove that wave operators for Schrödinger operators with multi-center local point interactions are scaling limits of the ones for Schrödinger operators with regular potentials. We simultaneously present a proof of the corresponding well known result for the resolvent which substantially simplifies the one by Albeverio et al.

힐베르트의 세 번째 문제

  • 한인기
    • 한국수학사학회지
    • /
    • 제12권2호
    • /
    • pp.25-39
    • /
    • 1999
  • In Euclidean plane geometry, areas of polygons can be computed through a finite process of cutting and pasting. The Hilbert's third problem is that a theory of volume can not be based on the idea of cutting and pasting. This problem was solved by Dehn a few months after it was posed. The purpose of this article is not only to study Hilbert's third Problem and its proof but also to provide basis for the secondary school mathematics.

  • PDF

A Note on the Minimal Variability Weighting Function Problem

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권3호
    • /
    • pp.991-997
    • /
    • 2006
  • Recently, Liu (2005) proposed a special type of weighting function under a given preference index level with the minimal variability similar to the minimal variability OWA operator weights problem proposed by Fuller and Majlender (2003). He solved this problem using a result of classical optimal control theory. In this note, we give a direct elementary proof of this problem without using any known results.

  • PDF

REMARKS ON THE EXISTENCE OF AN INERTIAL MANIFOLD

  • Kwak, Minkyu;Sun, Xiuxiu
    • 대한수학회지
    • /
    • 제58권5호
    • /
    • pp.1261-1277
    • /
    • 2021
  • An inertial manifold is often constructed as a graph of a function from low Fourier modes to high ones and one used to consider backward bounded (in time) solutions for that purpose. We here show that the proof of the uniqueness of such solutions is crucial in the existence theory of inertial manifolds. Avoiding contraction principle, we mainly apply the Arzela-Ascoli theorem and Laplace transform to prove their existence and uniqueness respectively. A non-self adjoint example is included, which is related to a differential system arising after Kwak transform for Navier-Stokes equations.