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EXISTENCE OF n POSITIVE SOLUTIONS TO

SECOND-ORDER MULTI-POINT BOUNDARY VALUE

PROBLEM AT RESONANCE

Feng Wang and Fang Zhang

Abstract. The existence of n positive solutions is established for second-
order multi-point boundary value problem at resonance where n is an
arbitrary natural number. The proof is based on a theory of fixed point

index for A-proper semilinear operators defined on cones due to Cremins.

1. Introduction

In this paper, we are concerned the multi-point boundary value problem
(BVP for short)

(1.1)


−x′′(t) = f(t, x), t ∈ (0, 1),

x(0) =
m−2∑
i=1

αix(ξi), x(1) =
m−2∑
i=1

βix(ξi),

where f : [0, 1] × R → R is continuous, m > 2, 0 < ξ1 < ξ2 < · · · < ξm−2 <
1, αi, βi ≥ 0, i = 1, 2, . . . ,m− 2 with condition

(1.2)
m−2∑
i=1

αi =
m−2∑
i=1

βi = 1.

We note that (1.2) means that the multi-point boundary value problem (1.1)
happens to be at resonance in the sense that the associated linear homogeneous
boundary value problem

−x′′(t) = 0, t ∈ (0, 1),

x(0) =
m−2∑
i=1

αix(ξi), x(1) =
m−2∑
i=1

βix(ξi)

has x(t) ≡ c, t ∈ [0, 1], c ∈ R, as a nontrivial solution.
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Motivated by the work of Bitsadze and Samarskii on nonlocal linear el-
liptic boundary value problem [2, 3], Il’in and Moiseev studied a multi-point
boundary value problems for linear second-order ordinary differential equations
[13]. Since then, great efforts have been devoted to the multi-point boundary
value problems for more general nonlinear ordinary differential equations due
to its theoretical challenge and its great potential applications; see for example
[1, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 25, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39] and the references therein. Some theorems and methods of non-
linear functional analysis have been applied to research on this problem, such
as the method of topological degree and Leray-Schauder fixed point theorem
[15, 30, 31, 33, 34, 37], the upper and lower solutions method and monotone
iterative technique [38], and Mawhin coincidence degree theory [21, 22]. Bound-
ary value problems at resonance in the continuous setting have been studied
by several authors, see [6, 8, 9, 19] for some references along this line. In most
real problems, only the positive solution is significant. It is well known that the
problem of existence of positive solutions to boundary value problem is very
difficult when the resonant case is considered. To our best knowledge, only few
papers deal with positive solutions to boundary value problems at resonance
[1, 12, 14, 16, 25, 32, 35, 36, 39]. Recently, Yang and Shen [36] obtained the
existence of a positive solution for problem (1.1) with resonant condition (1.2)
or
(1.3)
m−2∑
i=1

αi ̸= 1,

m−2∑
i=1

βi ̸= 1,

m−2∑
i=1

αiξi

(
1−

m−2∑
i=1

βi

)
+
(
1−

m−2∑
i=1

αi

)(
1−

m−2∑
i=1

βiξi

)
= 0.

The main method is the Leggett-Williams norm-type theorem due to O’Regan
and Zima [24]. But there are no results concerning with the multiplicity of
positive solutions for (1.1). Inspired by the above work, the aim of this paper
is to establish the existence results of n positive solutions for boundary value
problem (1.1), where n is an arbitrary natural number. This will be done by
applying the theory of a fixed point index for A-proper semilinear operators
defined on cones obtained by Cremins [4].

The remaining part of the paper is organized as follows. In Section 2, some
preliminaries and lemmas will be given, and the main theorems are formulated
and proved in Section 3. Finally, in Section 4, we give an example to illustrate
our results.

2. Notation and preliminaries

We start by introducing some basic notation relative to theory of the fixed
point index for A-proper semilinear operators defined on cones established by
Cremins (see [4]).

Let X and Y be Banach spaces, D a linear subspace of X, {Xn} ⊂ D, and
{Yn} ⊂ Y sequences of oriented finite dimensional subspaces such thatQny → y
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in Y for every y and dist(x,Xn) → 0 for every x ∈ D where Qn : Y → Yn and
Pn : X → Xn are sequences of continuous linear projections. The projection
scheme Γ = {Xn, Yn, Pn, Qn} is then said to be admissible for maps from
D ⊂ X to Y .

Definition 2.1 ([4]). A map T : D ⊂ X → Y is called approximation-proper
(abbreviated A-proper) at a point y ∈ Y with respect to Γ, if Tn ≡ QnT |D∩Xn is
continuous for each n ∈ N and whenever {xnj : xnj ∈ D∩Xnj} is bounded with
Tnjxnj → y, then there exists a subsequence {xnjk

} such that xnjk
→ x ∈ D,

and Tx = y. T is said to be A-proper on a set D if it is A-proper at all points
of D.

Let K be a cone in a finite dimensional Banach space X and Ω ⊂ X be
open and bounded with Ω ∩ K = ΩK ̸= ∅. Let T : ΩK → K be continuous
such that Tx ̸= x on ∂ΩK = ∂Ω ∩K where ΩK and ∂ΩK denote the closure
and boundary, respectively, of ΩK relative K. Let ρ : X → K be an arbitrary
retraction.

The following definition of finite dimensional index forms the basis of gen-
eralized index for A-proper maps I − T .

Definition 2.2 ([4]). We define

iK(T,Ω) = degB(I − Tρ, ρ−1(Ω) ∩BR, 0),

where the degree is the Brouwer degree and BR is a ball containing ΩK .

Now let K be a cone in an infinite dimensional Banach space X with pro-
jection scheme Γ such that Qn(K) ⊆ K for every n ∈ N. Let ρ : X → K
be an arbitrary retraction and Ω ⊂ X an open bounded set such that ΩK =
Ω ∩ K ̸= ∅. Let T : ΩK → K be such that I − T is A-proper at 0. Write
Kn = K ∩Xn = QnK and Ωn = ΩK ∩Xn. Then Qnρ : Xn → Kn is a finite
dimensional retraction.

Definition 2.3 ([4]). If Tx ̸= x on ∂ΩK , then we define

indK(T,Ω) = {k ∈ Z ∪ {±∞} : iKnj
(QnjT,Ωnj ) → k for some nj → ∞},

that is, the index is the set of limit points of iKnj
(QnjT,Ωnj ), where the finite

dimensional index is that defined above.

Let L : domL ⊂ X → Y be a Fredholm map of index zero and P :
X → X, Q : Y → Y be continuous projectors such that ImP = KerL,
KerQ = ImL and X = KerL

⊕
KerP , Y = ImL

⊕
ImQ. The restriction

of L to domL ∩ KerP , denote L1, is a bijection onto ImL with continuous
inverse L−1

1 : ImL →domL∩KerP . Since dimImQ = dimKerL, there exists a
continuous bijection J : ImQ → KerL. let K be a cone in an infinite dimen-
sional Banach space X with projection scheme Γ. If we let H = L + J−1P ,
then H : domL ⊂ X → Y is a linear bijection with bounded inverse. Thus
K1 = H(K ∩ domL) is a cone in the Banach space Y .
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Let Ω ⊂ X be open and bounded with ΩK ∩domL ̸= ∅, L : domL ⊂ X → Y
a bounded Fredholm operator of index zero, N : ΩK ∩ domL → Y a bounded
continuous nonlinear operator such that L−N is A-proper at 0.

We can now extend the definition of the index to A-proper maps of the form
L−N acting on cones.

Definition 2.4 ([4]). Let ρ1 be a retraction from Y to K1 and assume QnK1 ⊂
K1, P + JQN + L−1

1 (I − Q)N maps K ∩ domL to K ∩ domL and Lx ̸= Nx
on ∂ΩK . We define the fixed point index of L−N over ΩK as

indK([L,N ],Ω) = indK1(T,U),

where U = H(ΩK), T : Y → Y is defined as Ty = (N + J−1P )H−1y for each
y ∈ Y , and the index on the right is that of Definition 2.3.

For convenience, we recall some properties of indK .

Proposition 2.1 ([4]). Let L : domL → Y be a Fredholm operator of index
zero, Ω ⊂ X be open and bounded. Assume that P + JQN + L−1

1 (I − Q)N
maps K to K, and Lx ̸= Nx on ∂ΩK . Then we have

(P1) (Existence property) if indK([L,N ],Ω) ̸= {0}, then there exists x ∈ ΩK

such that Lx = Nx.
(P2) (Normality property) if x0 ∈ ΩK , then indK([L,−J−1P+ ŷ0],Ω) = {1},

where ŷ0 = Hx0 and ŷ0(y) = y0 for every y ∈ H(ΩK).
(P3) (Additivity property) if Lx ̸= Nx for x ∈ ΩK\(Ω1 ∪Ω2), where Ω1 and

Ω2 are disjoint relatively open subsets of ΩK , then

indK([L,N ],Ω) ⊆ indK([L,N ],Ω1) + indK([L,N ],Ω2)

with equality if either of indices on the right is a singleton.
(P4) (Homotopy invariance property) if L−N(λ, x) is an A-proper homotopy

on ΩK for λ ∈ [0, 1] and (N(λ, x) + J−1P )H−1 : K1 → K1 and θ ̸∈ (L −
N(λ, x))(∂ΩK) for λ ∈ [0, 1], then indK([L,N(λ, x)],Ω) = indK1(Tλ, U) is
independent of λ ∈ [0, 1], where Tλ = (N(λ, x) + J−1P )H−1.

The following two lemmas will be used in this paper.

Lemma 2.1 ([29]). If L : domL → Y is a Fredholm operator of index zero, Ω
is an open bounded set, and ΩK ∩ domL ̸= ∅, and let L− λN be A-proper for
λ ∈ [0, 1]. Assume that N is bounded and P + JQN + L−1

1 (I −Q)N maps K
to K. If there exists e ∈ K1\{θ} such that

(2.1) Lx−Nx ̸= µe

for every x ∈ ∂ΩK and all µ ≥ 0, then indK([L,N ],Ω) = {0}.

We assume that there is a continuous bilinear form [y, x] on Y ×X such that
y ∈ ImL if and only if [y, x] = 0 for each x ∈ KerL. This condition implies
that if {x1, x2, . . . , xn} is a basis in KerL, then the linear map J : ImQ →
KerL defined by Jy = β

∑n
i=1[y, xi]xi, β ∈ R+ is an isomorphism and that
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if y =
∑n

i=1 yixi, then [J−1y, xi] =
yi

β for 1 ≤ i ≤ n and [J−1x0, x0] > 0 for

x0 ∈ KerL.
Cremins [4] extended a continuation theorem related to that of Mawhin [20]

and Petryshyn [26] for semilinear equations to cones refer to [4, Corollary 1]
for the details. By Lemma 2.1 and [4, Corollary 1], we obtain that following
existence theorem of positive solutions to a semilinear equation in cones.

Lemma 2.2. If L : domL → Y is a Fredholm operator of index zero, K ⊂ X
is a cone, Ω1 and Ω2 are open bounded sets such that θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and
Ω2 ∩K ∩ domL ̸= ∅, where θ is the zero element of X. Suppose that L − λN
is A-proper for λ ∈ [0, 1] with N : Ω2 ∩K → Y is bounded. Assume that

(C1) (P + JQN)(K) ⊂ K and (P + JQN + L−1
1 (I −Q)N)(K) ⊂ K,

(C2) Lx ̸= λNx for x ∈ ∂Ω2 ∩K, λ ∈ (0, 1],
(C3) QNx ̸= 0 for x ∈ ∂Ω2 ∩K ∩KerL,
(C4) [QNx, x] ≤ 0 for all x ∈ ∂Ω2 ∩K ∩KerL,
(C5) there exists e ∈ K1\{θ} such that

Lx−Nx ̸= µe for every µ ≥ 0, x ∈ ∂Ω1 ∩K.

Then there exists x ∈ domL ∩K ∩ (Ω2 \ Ω1) such that Lx = Nx.

Remark 2.1. It is worth mentioning that the positive or nonnegative solutions
of an operator equation Lx = Nx was also discussed by a recent paper of
O’Regan and Zima [24] and the earlier papers [5, 7, 23, 27, 28].

3. Main results

The goal of this section is to apply Lemma 2.2 to discuss the existence and
multiplicity of positive solutions for the BVP (1.1). For simplicity of notation,
we denote ξ0 = 0, ξm−1 = 1, α0 = αm−1 = β0 = βm−1 = 0 and the function
l(s), s ∈ [0, 1] as follow

l(s) = 1− s+

m−1∑
i=0

βiξi − 1

m−1∑
i=0

αiξi

m−1∑
i=k

αi(ξi − s)−
m−1∑
i=k

βi(ξi − s),

ξk−1 ≤ s ≤ ξk, k = 1, 2, . . . ,m− 1.

It is easy to check that l(s) ≥ 0, s ∈ [0, 1]. Denote the function G(t, s) as
follow:

G(t, s) =


(1− s)2

2
+

3t2 + 5

6
∫ 1

0
l(s)ds

l(s), 0 ≤ t ≤ s ≤ 1,

(1− s)2

2
+ s− t+

3t2 + 5

6
∫ 1

0
l(s)ds

l(s), 0 ≤ s ≤ t ≤ 1.
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Note that G(t, s) ≥ 0, t, s ∈ [0, 1]. We also set

κ = min
{

min
s∈[0,1]

∫ 1

0
l(s)ds

l(s)
,

1

max
t,s∈[0,1]

G(t, s)

}
.

Note that κ < 1.
Consider the Banach spaces

X = Y = C[0, 1]

with

∥x∥ = max
t∈[0,1]

|x(t)|.

Let L : domL → Y and N : X → Y with

domL =
{
x ∈ X : x′′ ∈ C[0, 1], x(0) =

m−2∑
i=1

αix(ξi)
}

be given by (Lx)(t) = −x′′(t) and (Nx)(t) = f(t, x(t)) for t ∈ [0, 1].
It is easy to check that

KerL = {x ∈ domL : x(t) ≡ c on [0, 1], c ∈ R},

ImL =
{
y ∈ Y :

∫ 1

0

l(s)y(s)ds = 0
}
,

dim KerL = codim ImL = 1,

so that L is a Fredholm operator of index zero.
Next, define the projections P : X → X by

Px =

∫ 1

0

x(s)ds,

and Q : Y → Y by

Qy =
1∫ 1

0
l(s)ds

∫ 1

0

l(s)y(s)ds.

Furthermore, we define the isomorphism J : ImQ → ImP as Jy = βy, where
β = 1. We are easy to verify that the inverse operator L−1

1 : ImL → domL ∩
KerP of L|domL∩KerP : domL ∩ KerP → ImL is (L−1

1 y)(t) =
∫ 1

0
k(t, s)y(s)ds,

where

k(t, s) =


(1− s)2

2
, 0 ≤ t ≤ s ≤ 1,

(1− s)2

2
+ s− t, 0 ≤ s ≤ t ≤ 1.

Now we can state and prove our main results.

Theorem 3.1. Assume that there exist two positive numbers a, b such that
(H1) f(t, x) ≥ −κx for all t ∈ [0, 1], x ≥ 0.
(H2) If one of the two conditions
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(i) min
t∈[0,1]

f(t, a) > 0, max
t∈[0,1]

f(t, b) < 0

and
(ii) max

t∈[0,1]
f(t, a) < 0, min

t∈[0,1]
f(t, b) > 0

is satisfied, then the BVP (1.1) has at least one positive solution x∗ ∈ X satis-
fying min{a, b} ≤ ∥x∗∥X ≤ max{a, b}.

Proof. Consider the cone

K = {x ∈ X : x(t) ≥ 0, t ∈ [0, 1]}.

It is easy to see a ̸= b. Without loss of generality, let a < b.
First, we note that L, as so defined, is a Fredholm operator of index zero,

L−1
1 is compact by Arzela-Ascoli theorem and thus L − λN is A-proper for

λ ∈ [0, 1] by (a) of Lemma 2 in [26].
For each x ∈ K, then by condition (H1) that

Px+ JQNx

=

∫ 1

0

x(s)ds+
1∫ 1

0
l(s)ds

∫ 1

0

l(s)f(s, x(s))ds

≥
∫ 1

0

(
1− κ∫ 1

0
l(s)ds

l(s)
)
x(s)ds

≥ 0,

Px+ JQNx+ L−1
1 (I −Q)Nx

=

∫ 1

0

x(s)ds+
1∫ 1

0
l(s)ds

∫ 1

0

l(s)f(s, x(s))ds

+

∫ 1

0

k(t, s)
[
f(s, x(s))− 1∫ 1

0
l(s)ds

∫ 1

0

l(τ)f(τ, x(τ))dτ
]
ds

=

∫ 1

0

x(s)ds+

∫ 1

0

G(t, s)f(s, x(s))ds

≥
∫ 1

0

(1− κG(t, s))x(s)ds ≥ 0.

This implies that condition (C1) of Lemma 2.2 is satisfied. To apply Lemma
2.2, we should define two open bounded subsets Ω1,Ω2 of X so that (C2)-(C5)
of Lemma 2.2 hold.

We prove only Case (H2)(i). In the same way, we can prove the case (H2)(ii).
Let

Ω1 = {x ∈ X : ∥x∥X < a}, Ω2 = {x ∈ X : ∥x∥X < b}.
Clearly, Ω1 and Ω2 are bounded and open sets and

θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2.



822 FENG WANG AND FANG ZHANG

Next we show that (H2)(i) implies (C2). That is, suppose that there ex-
ist x1 ∈ K ∩ ∂Ω2 ∩ domL and λ1 ∈ (0, 1] such that Lx1 = λ1Nx1 then
x′′
1(t) = −λ1f(t, x1(t)) for all t ∈ [0, 1]. Let t1 ∈ [0, 1], such that x1(t1) =

maxt∈[0,1] x1(t) = b. From boundary conditions, we have t1 ∈ (0, 1). In this
case, x′

1(t1) = 0, x′′
1(t1) ≤ 0. This gives

0 ≥ x′′
1(t1) = −λ1f(t1, x(t1)) = −λ1f(t1, b) > 0,

which contradicts (H2)(i). So for each x ∈ ∂Ω2 ∩K ∩ domL and λ ∈ (0, 1], we
have Lx ̸= λNx. Thus (C2) of Lemma 2.2 is satisfied.

To prove (C4) of Lemma 2.2, we define the bilinear form [·, ·] : Y ×X → R
as

[y, x] =

∫ 1

0

l(s)y(s)x(s)ds.

It is clear that [·, ·] is continuous and satisfies [y, x] = 0 for every x ∈ KerL, y ∈
ImL. In fact, for any x ∈ KerL and y ∈ ImL, we have x ≡ c, a constant,
and there exists x ∈ X such that y(s) = −x′′(s) for each s ∈ [0, 1]. By

x(0) =
∑m−2

i=1 αix(ξi), x(1) =
∑m−2

i=1 βix(ξi), we get

[y, x] =

∫ 1

0

l(s)y(s)x(s)ds = −c

∫ 1

0

l(s)x′′(s)ds = 0.

Let x ∈ KerL ∩ ∂Ω2 ∩K. Then x(t) ≡ b, so we have by condition (H2)(i)

QNx =
1∫ 1

0
l(s)ds

∫ 1

0

l(s)f(s, b)ds ̸= 0,

[QNx, x] =

∫ 1

0

l(s)
( 1∫ 1

0
l(s)ds

∫ 1

0

l(s)f(s, b)ds · b
)
ds

= b ·
∫ 1

0

l(s)ds · 1∫ 1

0
l(s)ds

∫ 1

0

l(s)f(s, b)ds

= b ·
∫ 1

0

l(s)f(s, b)ds

< 0.

Thus (C3) and (C4) of Lemma 2.2 are verified.
Finally, we prove (C5) of Lemma 2.2 is satisfied. We may suppose that

Lx ̸= Nx, ∀ x ∈ ∂Ω1 ∩ K ∩ domL. Otherwise, the proof is completed. Let
e∗ ≡ 1 ∈ K1\{θ}. We claim that

(3.2) Lx−Nx ̸= µe∗, ∀ x ∈ ∂Ω1 ∩K ∩ domL, µ ≥ 0.

In fact, if not, there exist x2 ∈ ∂Ω1 ∩K ∩ domL, µ1 > 0, such that

Lx2 −Nx2 = µ1.

Since QL = θ, operating on both sides of the latter equation by Q, we obtain

QNx2 +Qµ1 = 0,
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that is

(3.3)
1∫ 1

0
l(s)ds

∫ 1

0

l(s)(f(s, x2(s)) + µ1)ds = 0.

For any x2 ∈ ∂Ω1 ∩ K ∩ domL, we have ∥x2∥X = a. There exists t2 ∈ [0, 1],
such that x2(t2) = a. By condition (H2)(i) and µ1 > 0,

1∫ 1

0
l(s)ds

∫ 1

0

l(s)(f(s, x2(s)) + µ1)ds =
1∫ 1

0
l(s)ds

∫ 1

0

l(s)(f(s, a) + µ1)ds > 0,

in contradiction to (3.3). So (3.2) holds, that is (C5) of Lemma 2.2 is verified.
Thus all conditions of Lemma 2.2 are satisfied and there exists x∗ ∈ K ∩

(Ω2\Ω1)∩domL such that Lx∗ = Nx∗ and the assertion follows. Thus x∗ ∈ K
and a ≤ ∥x∗∥X ≤ b. □

Let [c] be the integer part of c. The following result concerns the existence
results of n positive solutions.

Theorem 3.2. Assume that there exist n+1 positive numbers a1 < a2 < · · · <
an+1 such that

(H1)
′ f(t, x) ≥ −κx for all t ∈ [0, 1], x ≥ 0.

(H2)
′ If one of the two conditions

(i) min
t∈[0,1]

f(t, a2i−1) > 0, i = 1, 2, . . . , [n+2
2 ],

max
t∈[0,1]

f(t, a2i) < 0, i = 1, 2, . . . , [n+1
2 ]

and
(ii) max

t∈[0,1]
f(t, a2i−1) < 0, i = 1, 2, . . . , [n+2

2 ],

min
t∈[0,1]

f(t, a2i) > 0, i = 1, 2, . . . , [n+1
2 ]

is satisfied, then the BVP (1.1) has at least one positive solutions x∗
i ∈ K,

i = 1, 2, . . . , n satisfying ai < ∥x∗
i ∥X < ai+1.

Proof. Modeling the proof of Theorem 3.1, we can prove that if there exist two
positive numbers a, b such that mint∈[0,1] f(t, a) > 0 and maxt∈[0,1] f(t, b) < 0,
then BVP (1.1) has at least one positive solution x∗ ∈ K satisfying min{a, b} <
∥x∗∥X < max{a, b}.

By the claim, for every pair of positive numbers {ai, ai+1}, i = 1, 2, . . . , n,
(1.1) has at least one positive solutions x∗

i ∈ K satisfying ai < ∥x∗
i ∥X <

ai+1. □

We have the following existence result for two positive solutions.

Corollary 3.1. Assume that there exist three positive numbers a1 < a2 < a3
such that

(H1)
′′ f(t, x) ≥ −κx for all t ∈ [0, 1], x ≥ 0.

(H2)
′′ If one of the two conditions
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(i) min
t∈[0,1]

f(t, a1) > 0, max
t∈[0,1]

f(t, a2) < 0, min
t∈[0,1]

f(t, a3) > 0

and
(ii) max

t∈[0,1]
f(t, a1) < 0, min

t∈[0,1]
f(t, a2) > 0, max

t∈[0,1]
f(t, x) < 0

is satisfied, then the BVP (1.1) has at least two positive solutions x∗
1, x

∗
2 ∈ K

satisfying a1 ≤ ∥x∗
1∥X < a2 < ∥x∗

2∥X ≤ a3.

We also have the following existence result for three positive solutions.

Corollary 3.2. Assume that there exist four positive numbers a1 < a2 < a3 <
a4 such that

(H1)
′′′ f(t, x) ≥ −κx for all t ∈ [0, 1], x ≥ 0.

(H2)
′′′ If one of the two conditions

(i) min
t∈[0,1]

f(t, a1)>0, max
t∈[0,1]

f(t, a2)<0, min
t∈[0,1]

f(t, a3)>0, max
t∈[0,1]

f(t, a4)<0

and
(ii) max

t∈[0,1]
f(t, a1)<0, min

t∈[0,1]
f(t, a2)>0, max

t∈[0,1]
f(t, a3)<0, min

t∈[0,1]
f(t, a4)>0

is satisfied, then the BVP (1.1) has at least three positive solutions x∗
1, x

∗
2, x

∗
3 ∈

K satisfying a1 ≤ ∥x∗
1∥X < a2 < ∥x∗

2∥X < a3 < ∥x∗
3∥X ≤ a4.

Remark 3.1. In this paper, we give some multiplicity results for positive so-
lutions. Up to now, there were fewer papers that considered the existence
of multiple positive solutions for multi-point boundary value problem at reso-
nance. Therefore, the results of this paper is new.

4. Example

In this section, we give an example to illustrate the main results of the paper.
Consider the following second-order three-point boundary value problem (BVP)

(4.1)

{
−x′′(t) = −433(5t+2)

9200 sinx, 0 < t < 1,
x(0) = 1

2x(
1
4 ) +

1
2x(

1
2 ), x(1) = 1

3x(
1
4 ) +

2
3x(

1
2 ),

Corresponding to problem (1.1), we have α1 = α2 = 1
2 , β1 = 1

3 , β2 = 2
3 , ξ1 =

1
4 , ξ2 = 1

2 . By calculating directly, we have κ = 433
920 . It is easy to check that

−433(5t+2)
9200 sinx ≥ −κx, x ≥ 0, t ∈ [0, 1].

(1) We take a = π
2 , b = 3π

2 , then all the conditions of Theorem 3.1 are
satisfied. Thus BVP (4.1) has at least one positive solution x∗ satisfying π

2 ≤
∥x∗∥X ≤ 3π

2 .

(2) We take a1 = π
2 , a2 = 3π

2 , a3 = 5π
2 , then all the conditions of Corollary

3.1 are satisfied. Thus BVP (4.1) has at least two positive solutions x∗
1, x

∗
2

satisfying π
2 ≤ ∥x∗

1∥X < 3π
2 < ∥x∗

2∥X ≤ 5π
2 .

(3) We take a1 = π
2 , a2 = 3π

2 , a3 = 5π
2 , a4 = 7π

2 , then all the conditions of
Corollary 3.2 are satisfied. Thus BVP (4.1) has at least three positive solutions
x∗
1, x

∗
2, x

∗
3 satisfying π

2 ≤ ∥x∗
1∥X < 3π

2 < ∥x∗
2∥X < 5π

2 < ∥x∗
3∥X ≤ 7π

2 .

(4) We take a2i−1 = (4i−3)π
2 , i = 1, 2, . . . , [n+2

2 ]; a2i =
(4i−1)π

2 , i = 1, 2, . . .,

[n+1
2 ], then all the conditions of Theorem 3.2 are satisfied. Thus BVP (4.1) has
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at least n positive solutions x∗
i , i = 1, 2, . . . , n satisfying ai < ∥x∗

i ∥X < ai+1,
i = 1, 2, . . . , n.
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