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ON THE APPROXIMATION BY REGULAR POTENTIALS OF

SCHRÖDINGER OPERATORS WITH POINT

INTERACTIONS

Artbazar Galtbayar and Kenji Yajima

Abstract. We prove that wave operators for Schrödinger operators with
multi-center local point interactions are scaling limits of the ones for

Schrödinger operators with regular potentials. We simultaneously present

a proof of the corresponding well known result for the resolvent which
substantially simplifies the one by Albeverio et al.

1. Introduction

Let Y = {y1, . . . , yN} be the set of N points in R3 and T0 be the densely
defined non-negative symmetric operator in H = L2(R3) defined by

T0 = −∆|C∞0 (R3\Y ).

Any of selfadjoint extensions of T0 is called the Schrödinger operator with point
interactions at Y . Among them, we are concerned with the ones with local
point interactions Hα,Y which are defined by separated boundary conditions
at each point yj parameterized by αj ∈ R, j = 1, . . . , N . They can be defined
via the resolvent equation (cf. [2]): With H0 = −∆ being the free Schrödinger
operator and z ∈ C+ = {z ∈ C | =z > 0},

(1) (Hα,Y − z2)−1 = (H0 − z2)−1 +

N∑
j,`=1

(Γα,Y (z)−1)j` Gyjz ⊗ G
y`
z ,

where α = (α1, . . . , αN ) ∈ RN , Γα,Y (z) is an N ×N symmetric matrix whose
entries are entire holomorphic functions of z ∈ C given by

(2) Γα,Y (z) :=
((
αj −

iz

4π

)
δj` − Gz(yj − y`)δ̂j`

)
j,`=1,...,N

,
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where δj` = 1 for j = ` and δj` = 0 otherwise; δ̂j` = 1 − δj`; Gz(x) is the
convolution kernel of (H0 − z2)−1:

(3) Gz(x) =
eiz|x|

4π|x|
and Gyz (x) =

eiz|x−y|

4π|x− y|
.

Since (Hα,Y − z2)−1 − (H0 − z2)−1 is of rank N by virtue of (1), the wave
operators W±α,Y defined by the limits

(4) W±α,Y u = lim
t→±∞

eitHα,Y e−itH0u, u ∈ H

exist and are complete in the sense that ImageW±α,Y = Hac, the absolutely

continuous (AC for short) subspace of H for Hα,Y . Wave operators are of
fundamental importance in scattering theory.

This paper is concerned with the approximation of the wave operators W±α,Y
by the ones for Schrödinger operators with regular potentials and generalizes
a result in [5] for the case N = 1, which immediately implies that W±α,Y are

bounded in Lp(R3) for 1 < p < 3, see remarks below Theorem 1.1. We also give
a proof of the corresponding well known result for the resolvent (Hα,Y − z)−1

which substantially simplifies the one in the seminal monograph [2].
We begin with recalling various properties of Hα,Y (see [2]):

• Equation (1) defines a unique selfadjoint operator Hα,Y in the Hilbert
space H = L2(R3), which is real and local.

• The spectrum of Hα,Y consists of the AC part [0,∞) and at most N
non-positive eigenvalues. Positive eigenvalues are absent. We define
E = {ik ∈ iR+ : − k2 ∈ σp(Hα,Y )}. We simply write Hac and Pac
respectively for the AC subspace Hac(Hα,Y ) of H for Hα,Y and for the
projection Pac(Hα,Y ) onto Hac.

• Hα,Y may be approximated by a family of Schrödinger operators with
scaled regular potentials

(5) HY (ε) = −∆ +

N∑
i=1

λi(ε)

ε2
Vi

(
x− yi
ε

)
,

in the sense that for z ∈ C+

(6) lim
ε→0

(HY (ε)− z2)−1u = (Hα,Y − z2)−1u, ∀u ∈ H,

where Vj , j = 1, . . . , N are such that Hj = −∆ + Vj(x) have threshold
resonances at 0 and λ1(ε), . . . , λN (ε) are smooth real functions of ε
such that λj(0) = 1 and λ′j(0) 6= 0 (see Theorem 1.1 for more details).

We prove the following theorem (see Section 4 for the definition of the threshold
resonance).

Theorem 1.1. Let Y be the set of N points Y = {y1, . . . , yN}. Suppose that:
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(1) V1, . . . , VN are real-valued functions such that for some p < 3/2 and
q > 3,

(7) 〈x〉2Vj ∈ (Lp ∩ Lq)(R3), j = 1, . . . , N.

(2) λ1(ε), . . . , λN (ε) are real C2 functions of ε ≥ 0 such that

λj(0) = 1, λ′j(0) 6= 0, ∀j = 1, . . . , N.

(3) Hj = −∆ + Vj, j = 1, . . . , N admits a threshold resonance at 0.

Then, the following statements are satisfied:

(a) HY (ε) converges in the strong resolvent sense as in (6) as ε → 0 to
a Schrödinger operator Hα,Y with point interactions at Y with certain
parameters α = (α1, . . . , αN ) to be specified below.

(b) Wave operators W±Y,ε for the pair (HY (ε), H0) defined by the strong
limits

(8) W±Y,εu = lim
t→±∞

eitHY (ε)e−itH0u, u ∈ H

exist and are complete. W±Y,ε satisfy

(9) lim
ε→0
‖W±Y,εu−W

±
α,Y u‖H = 0, u ∈ H.

Note that Hölder’s inequality implies Vj ∈ Lr(R3) for all 1 ≤ r ≤ q under
the condition (7).

Remark 1.2. (i) It is known that W±Y,ε are bounded in Lp(R3) for 1 < p < 3

([14]) and, if λj(ε) = 1 for all j = 1, . . . , N , ‖W±Y,ε‖B(Lp) is independent of
ε > 0 and, the proof of Theorem 1.1 shows that Theorem 1.1 holds with α = 0.
It follows by virtue of (9) that WY,ε converges to Wα=0,Y weakly in Lp and
W±α=0,Y are bounded in Lp(R3) for 1 < p < 3. Actually, the latter result is

known for general α = (α1. . . . , αN ) but its proof is long and complicated ([5]).
Wave operators satisfy the intertwining property

f(Hα,Y )Hac(Hα,Y ) = W±∗α,Y f(H0)W±∗α,Y

for Borel functions f on R and, Lp mapping properties of f(Hα,Y )Pac(Hα,Y )
are reduced to those for the Fourier multiplier f(H0) for a certain range of p’s.

(ii) If some of Hj = −∆+Vj have no threshold resonance, then Theorem 1.1
remains to hold if corresponding points of interactions and parameters (yj , αj)
are removed from Hα,Y .

(iii) The first statement is long known (see [2]). We shall present here a
simplified proof, providing in particular details of the proof of Lemma 1.2.3 of
[2] where [6] is referred to for “a tedious but straightforward calculation” by
using a result from [4] and a simple matrix formula.

(iv) The existence and the completeness of wave operators W±Y,ε are well

known (cf. [11]).
(v) When N = 1 and α = 0, (9) is proved in [5]. The theorem is a general-

ization for general α and N ≥ 2.
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(vi) The matrix Γα,Y (k) is non-singular for all k ∈ (0,∞) by virtue of the
selfadjointness of Hα,Y and H0. Indeed, if it occurred that det Γα,Y (k0) = 0 for
some 0 < k0, then the selfadjointness of Hα,Y and H0 implied that Γα,Y (k)−1

had a simple pole at k0 and

2k0Resz=k0(Γα,Y (z)−1)j`(Gyjz , v)(u,Gy`z )(10)

= lim
z=k0+iε,ε↓0

(z2 − k2
0)

N∑
j,`=1

(Γα,Y (z)−1)j`(Gyjz , v)(u,Gy`z ) 6= 0

for some u, v ∈ C∞0 (R3). However, the absence of positive eigenvalues of Hα,Y

(see [2, pp. 116–117]) and the Lebesgue dominated convergence theorem imply
for all u, v ∈ C∞0 (R3) that

lim
z=k0+iε,ε↓0

(z2 − k2
0)((Hα,Y − z2)−1u, v)

= lim
z=k0+iε,ε↓0

∫
R

2ik0ε− ε2

µ− (k0 + iε)2
(E(dµ)u, v) = (E({k2

0})u, v) = 0

and the likewise for (z2 − k2
0)((H0 − z2)−1u, v), where E(dµ) is the spectral

projection for Hα,Y , which contradict (10).

For more about point interactions we refer to the monograph [2] or the intro-
duction of [5] and jump into the proof of Theorem 1.1 immediately. We prove
(9) only for W+

Y,ε as HY (ε) and Hα,Y are real operators and the complex con-

jugation C changes the direction of the time which implies W−Y,ε = CW+
Y,εC−1.

We write H for L2(R3), (u, v) for the inner product and ‖u‖ the norm. u⊗v
and |u〉〈v| indiscriminately denote the one dimentional operator

(u⊗ v)f(x) = |u〉〈v|f〉(x) =

∫
R3

u(x)v(y)f(y)dy.

Integral operators T and their integral kernels T (x, y) are identified. Thus
we often say that operator T (x, y) satisfies such and such properties and etc.
B2(H) is the space of Hilbert-Schmidt operators in H and

‖T‖HS =

(∫∫
R3×R3

|T (x, y)|2dxdy
)1/2

is the norm of B2(H). 〈x〉 = (1 + |x|2)1/2 and a≤| · | b means |a| ≤ |b|. For

subsets D1 and D2 of the complex plane C, D1 b D2 means D1 is a compact
subset of the interior of D2.

2. Scaling

For ε > 0, we let

(Uεf)(x) = ε−3/2f(x/ε).

This is unitary in H and H0 = ε2U∗εH0Uε. We define H(ε) by

(11) H(ε) = ε2U∗εHY (ε)Uε, (HY (ε)− z2)−1 = ε2Uε(H(ε)− ε2z2)−1U∗ε .
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Then, H(ε) is written as

H(ε) = −∆ +

N∑
i=1

λi(ε)Vi

(
x− yi

ε

)
≡ −∆ + V (ε)

and W±Y,ε are transformed as

W±Y,ε = lim
t→±∞

Uεe
itH(ε)/ε2e−itH0/ε

2

U∗ε = UεW
±
Y (ε)U∗ε ,(12)

W±Y (ε) = lim
t→±∞

Uεe
itH(ε)e−itH0U∗ε .(13)

We write the translation operator by ε−1yj by

τj,εf(x) = f
(
x+

yj
ε

)
, j = 1, . . . , N.

When ε = 1, we simply denote τj = τj,1, j = 1, . . . , N . Then,

Vj

(
x− yj

ε

)
= τ∗j,εVj(x)τj,ε.

3. Stationary representation

The following lemma is obvious and well known:

Lemma 3.1. The subspace D∗ = {u ∈ L2 : û ∈ C∞0 (R3\{0})} is a dense linear
subspace of L2(R3).

It is obvious that ‖W+
Y,εu‖ = ‖W+

α,Y u‖ = ‖u‖ for every u ∈ H and, for

proving (9) it suffices to show that

(14) lim
ε→0

(W+
Y,εu, v) = (W+

α,Y u, v), u, v ∈ D∗.

We express W+
Y,ε and W+

α,Y via stationary formulae. We recall from [5] the

following representation formula for W+
α,Y .

Lemma 3.2. Let u, v ∈ D∗ and let Ωj`u be defined for j, ` ∈ {1, . . . , N} by

(15)
1

πi

∫ ∞
0

(∫
R3

(Γα,Y (−k)−1)j` G−k(x)
(
Gk(y)− G−k(y)

)
u(y)dy

)
kdk.

Then

(16) 〈W+
α,Y u, v〉 = 〈u, v〉+

N∑
j,`=1

〈τ∗j Ωj`τ`u, v〉.

Note that for u ∈ D∗ the inner integral in (15) produces a smooth function of
k ∈ R which vanishes outside the compact set {|ξ| : ξ ∈ supp û}.

For describing the formula for W+
Y,ε corresponding to (15) and (16), we

introduce some notation. H(N) = H ⊕ · · · ⊕ H is the N -fold direct sum of H.
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Likewise T (N) = T ⊕ · · · ⊕ T for an operator T on H. For i = 1, . . . , N we
decompose Vi(x) as the product:

Vi(x) = ai(x)bi(x), ai(x) = |Vi(x)|1/2, bi(x) = |Vi(x)|1/2sign(Vi(x)),

where sign a = ±1 if ±a > 0 and sign a = 0 if a = 0. We use matrix notation
for operators on H(N). Thus, we define

A =

a1 · · · 0
...

. . .
...

0 · · · aN

 , B =

b1 · · · 0
...

. . .
...

0 · · · bN

 , Λ(ε) =

λ1(ε) · · · 0
...

. . .
...

0 · · · λN (ε)

 .

Since aj , bj and λj(ε), j = 1, . . . , N are real valued, multiplications with A,B

and Λ(ε) are selfadjoint operators on H(N). We also define the operator τε by

τε : H 3 f 7→ τεf =

 τ1,εf...
τN,εf

 ∈ H(N)

so that

V (ε) =

N∑
j=1

λj(ε)Vj

(
x− yj

ε

)
= τ∗εAΛ(ε)Bτε.

We write for the case ε = 1 simply as τ = τ1 as previously. For z ∈ C, G0(z)
is the integral operator defined by

G0(z)u(y) =
1

4π

∫
R3

eiz|x−y|

|x− y|
u(y)dy.

It is a holomorphic function of z ∈ C+ with values in B(H) and

G0(z) = (H0 − z2)−1 for z ∈ C
and, it can be extended to various subsets of C+ when considered as a function
with values in a space of operators between suitable function spaces. We also
write

Gε(z) = (H(ε)− z2)−1 for z ∈ C+ \ {z : z2 ∈ σp(H(ε))}.

Lemma 3.3. Let V1, . . . , VN satisfy the assumption (7) and z ∈ C+
. Then:

(1) ai, bj ∈ L2(R3), i, j = 1, . . . , N .
(2) aiG0(z)bj ∈ B2(H), 1 ≤ i, j ≤ N .

Proof. (1) We have ai, bj ∈ L2(R3) for Vj ∈ L1(R3) as was remarked below
Theorem 1.1.

(2) We also have |aj |2 = |bj |2 = |Vj | ∈ L3/2(R3) and |x|−2 ∈ L3/2,∞(R3). It
follows by the generalized Young inequality that∫∫

R3×R3

|ai(x)|2|bj(y)|2

|x− y|2
dxdy ≤ C‖Vi‖L3/2‖Vj‖L3/2 .

Hence, aiG0(z)bj is of Hilbert-Schmidt type in L2(R3). �
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Using this notation, we have from (16) that

(17) (W+
α,Y u, v) = (u, v) +

〈(
Ωj`
)
τ∗u, τ∗v

〉
H(N) .

The resolvent equation for H(ε) may be written as

Gε(z)−G0(z) = −G0(z)τ∗εAΛ(ε)BτεGε(z)

and the standard argument (see e.g. [13]) yields

(18) Gε(z) = G0(z)−G0(z)τ∗εA(1 + Λ(ε)BτεG0(z)τ∗εA)−1Λ(ε)BτεG0(z).

Note that τεR0(z)τ∗ε 6= R0(z) in general unless N = 1.
Under the assumption (7) on V1, . . . , VN the first two statements of the

following lemma follow from the limiting absorption principle for the free
Schrödinger operator ([1], [7], [12]) and the last from the absence of positive
eigenvalues for H(ε) ([10]). In what follows we often write k for z when we
want emphasize that k can also be real.

Lemma 3.4. Suppose that V1, . . . , VN satisfy the assumption of Theorem 1.1.
Let 0 < ε ≤ 1. Then:

(1) For u ∈ D∗, limδ↓0 supk∈R ‖AτεG0(k + iδ)u−AτεG0(k)u‖H(N) = 0.
(2) limδ↓0 supk∈R ‖Λ(ε)Aτε(G0(k + iδ)−G0(k))τ∗εA‖B(H(N)) = 0.

(3) Define for k ∈ C+
= {k ∈ =k ≥ 0},

(19) Mε(k) = Λ(ε)BτεG0(k)τ∗εA.

Then, Mε(k) is a compact operator on H(N) and 1+Mε(k) is invertible
for all k 6= 0. (1 +Mε(k))−1 is a locally Hölder continuous function of

C+ \ {0} with values in B(H(N)).

Statements (1) and (2) remain to hold when A is replaced by B.

The well known stationary formula for wave operators ([12]) and the resol-
vent equation (18) yield

(W+
Y (ε)u, v)− (u, v)(20)

= − 1

πi

∫ ∞
0

(
(1+Mε(−k))−1Λ(ε)Bτε{G0(k)−G0(−k)}u,AτεG0(k)v

)
kdk.

For obtaining the corresponding formula for W+
Y,ε, we scale back (20) by using

the identity (12) and (13). Then

τεU
∗
ε = U∗ε τ,

and change of variable k to εk produce the first statement of the following
lemma. Recall τ = τε=1. The second formula is proven in parallel with the
first by using (11).

Lemma 3.5. (1) For u, v ∈ D∗, we have

(W+
Y,εu, v) = (u, v)− ε2

πi

∫ ∞
0

kdk
(
(1 +Mε(−εk))−1Λ(ε)(21)
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× B{G0(kε)−G0(−kε)}(N)U∗ε τu,AG0(kε)(N)U∗ε τv
)
.

(2) For k ∈ C+ with sufficiently large =k,

(HY (ε)− k2)−1 = G0(k)− ε2τ∗UεG0(kε)(N)A(1 +Mε(εk))−1(22)

× Λ(ε)BG0(kε)(N)U∗ε τ,

where G0(±kε)(N) = G0(±kε) ⊕ · · · ⊕ G0(±kε) is the N -fold direct sum of
G0(±kε).

Notice that for u ∈ D∗, {G0(kε) − G0(−kε)}(N)U∗ε τu 6= 0 only for R−1 <
k < R for some R > 0 and the integral on the right of (21) is only over
[R−1, R] ⊂ (0,∞) uniformly for 0 < ε < 1. Indeed, if u ∈ D∗ and û(ξ) = 0
unless R−1 ≤ |ξ| ≤ R for some R > 1, then, since the translation τ does not
change the support of û(ξ/ε), we have

F(U∗ε τu)(ξ) = ε−
3
2F(τu)

(
ξ

ε

)
= 0

unless R−1ε ≤ |ξ| ≤ Rε and

{G0(kε)−G0(−kε)}U∗ε τu = 2iπδ(ξ2 − k2ε2)F(U∗ε τu)(ξ) = 0

for k > R or k < R−1.

4. Limits as ε → 0

We study the small ε > 0 behavior of the right hand sides of (21) and (22).
For (21), the argument above shows that we need only consider the integral over
a compact set K ≡ [R−1, R] ⊂ R which will be fixed in this section. Splitting
ε2 = ε · ε1/2 · ε1/2 in front of the second term on the right, we place one ε1/2

each in front of BG0(±kε)(N)U∗ε and AG0(±kε)(N)U∗ or UεG0(kε)(N)A and
the remaining ε in front of (1 + Mε(±εk))−1. We begin with the following
lemma. Recall the definition (3) of Gk.

Lemma 4.1. Suppose a ∈ L2(R3). Then, following statements are satisfied:

(1) Let u ∈ D∗. Then, uniformly in k ∈ K, we have

(23) lim
ε→0
‖ε 1

2 aG0(±kε)U∗ε u− |a〉〈G±k, u〉‖L2 = 0.

(2) Let u ∈ L2(R3). Then, uniformly on compacts of k ∈ C+, we have

(24) ‖ε 1
2 aG0(kε)U∗ε u‖L2 ≤ C(=k)−1/2‖a‖L2‖u‖L2

and the convergence (23) with k in place of ±k.
(3) Let u ∈ L2(R3). Then, uniformly on compacts of k ∈ C+, we have

(25) lim
ε→0
‖ε 1

2UεG0(kε)au− |Gk〉〈a, u〉‖L2 = 0.
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Proof. (1) We prove the + case only. The proof for the − case is similar. We
have u ∈ S(R3) and

ε
1
2G0(kε)U∗ε u(x) =

1

4π
ε2

∫
R3

eikε|x−y|

|x− y|
u(εy)dy =

1

4π

∫
R3

eik|y|

|y|
u(y + εx)dy.

It is then obvious for any R > 0 and a compact K ⊂ R that

(26) lim
ε→0

sup
|x|≤R,k∈K

|ε 1
2G0(kε)U∗ε u(x)− 〈Gk, u〉| = 0.

Moreover, Hölder’s inequality in Lorentz spaces implies that

(27) |〈Gk, u〉|+ ‖ε
1
2G0(kε)U∗ε u‖∞ ≤ ‖(4π|x|)−1‖3,∞‖u‖ 3

2 ,1
.

It follows from (26) that for any R > 0

(28) lim
ε→0

sup
k∈K
‖ε 1

2 aG0(kε)U∗ε u− a〈Gk, u〉‖L2(|x|≤R) = 0

and, from (27) that

‖ε 1
2 aG0(kε)U∗ε u− a〈Gk, u〉‖L2(|x|≥R)

≤ 2‖a‖L2(|x|≥R)‖(4π|x|)−1‖3,∞‖u‖ 3
2 ,1
→ 0.(29)

Combining (26) and (29), we obtain (23) for u ∈ D∗. (Since D∗ is dense in

L3,1(R3), (23) actually holds for u ∈ L 3
2 ,1(R3).)

(2) We have

‖aG0(kε)‖2HS =

∫
R3×R3

|a(x)|2e−2=kε|x−y|

16|x− y|2
dxdy ≤ C(=kε)−1‖a‖2L2 .

This implies (24) as U∗ε is unitary in L2(R3) and it suffices to prove the strong
convergence in L2 for u ∈ C∞0 (R3). This, however, follows as in the case (1).

(3) We have

ε
1
2 (UεG0(kε)au)(x) =

∫
R3

eik|x−εy|

4π|x− εy|
a(y)u(y)dy

and Minkowski’s inequality implies

(30) ‖ε 1
2UεG0(kε)au− |Gk〉〈a, u〉‖ ≤

∫
R3

‖Gk(· − εy)− Gk‖L2(R3)|a(y)u(y)|dy.

Plancherel’s and Lebesgue’s dominated convergence theorems imply that for a
compact subset K̃ of C+

sup
k∈K̃
‖Gk(·+ εy)− Gk‖ = sup

k∈K̃
‖(F−1Gk)(ξ)(eεyξ − 1)‖L2(R3

ξ)

=

(∫
R3

sup
k∈K̃
|(|ξ|2 − k2)−1(eiεyξ − 1)|2dξ

) 1
2

≤ C
(∫

R3

〈ξ〉−4|(eiεyξ − 1)|2dξ
) 1

2
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is uniformly bounded for y ∈ R3 and converges to 0 as ε → 0. Thus, (25)
follows from (30) by applying Lebesgue’s dominated convergence theorem. �

We next study ε(1 +Mε(εk))−1 for ε→ 0 and k ∈ C+ \ {0}. We decompose
Mε(k) = Λ(ε)BτεG0(εk)τ∗εA into the diagonal and the off-diagonal parts:

(31) Mε(k) = Dε(εk) + εEε(εk),

where the diagonal part is given by

(32) Dε(εk) =

λ1(ε)b1G0(εk)a1 · · · 0
...

. . .
...

0 · · · λN (ε)bNG0(εk)aN


and, the off diagonal part εEε(εk) =

(
λi(ε)biτi,εG0(εk)τ∗j,εaj δ̂ij

)
by

(33) εEε(εk) = ε

(
λi(ε)

bi(x)eik|ε(x−y)+yi−yj |aj(y)

4π|ε(x− y) + yi − yj |
δ̂ij

)
ij

.

We study Eε(εk) first. Define constant matrix Ĝ(k) by

Ĝij(k) = Gij(k)δ̂ij , Gij(k) =
1

4π

eik|yi−yj |

|yi − yj |
, i 6= j.

Lemma 4.2. Assume (7) and let Ω ⊂ C+
be compact. We have uniformly for

k ∈ Ω that

(34) lim
ε→0
‖Eε(±εk)− |B〉Ĝ(±k)〈A|‖B(H(N)) = 0.

|B〉Ĝ(±k)〈A| is an operator of rank at most N on H(N) :

|B〉Ĝ(±k)〈A| ≡
(
bi(x)Gij(±k)aj(y)δ̂ij

)
.

Proof. We prove the + case only. The − case may be proved similarly. Let
k ∈ K. Then, ∣∣∣∣ eik|ε(x−y)+yi−yj |

|ε(x− y) + yi − yj |
− eik|yi−yj |

|yi − yj |

∣∣∣∣
≤ |k||ε(x− y)|
|ε(x− y) + yi − yj |

+
|ε(x− y)|

|ε(x− y) + yi − yj ||yi − yj |
(35)

≤ C|x− y|
|(x− y) + (yi − yj)/ε|

(36)

for a constant C > 0 and we may estimate as

‖(Eε,ij(εk)− λi(ε)biGij(k)aj)u‖L2 ≤ C
∥∥∥∥∫

R3

|bi(x)|x− y|aj(y)u(y)|
|(x− y) + (yi − yj)/ε|

dy

∥∥∥∥
≤ C

∥∥∥∥∫
R3

|〈x〉bi(x)〈y〉aj(y)u(y)|
|(x− y) + (yi − yj)/ε|

dy

∥∥∥∥
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= C

∥∥∥∥∫
R3

|τi,ε(〈x〉bi)(x)τj,ε(〈y〉aju)(y)|
|x− y|

dy

∥∥∥∥ .
Since the convolution with the Newton potential |x|−1 maps L

6
5 (R3) to L6(R3)

by virtue of Hardy-Littlewood-Sobolev’s inequality, Hölder’s inequality implies
that the right hand side is bounded by

C‖〈x〉bi‖L3‖〈y〉aju‖L6/5(37)

≤ C‖〈x〉bi‖L3‖〈x〉aj‖L3‖u‖L2 = C‖〈x〉2Vi‖
1
2

L
3
2
‖〈x〉2Vj‖

1
2

L
3
2
‖u‖L2 .

Let BR(0) = {x : |x| ≤ R} for an R > 0. Then, for ε > 0 such that 4Rε <
min |yi − yj |, we have

(35) ≤ 4Cε, ∀x, y ∈ BR(0).

Thus, if Vj ∈ C∞0 (R3), j = 1, . . . , N are supported by BR(0), then

‖Eε(εk)− Λ(ε)BĜ(k)A‖B(H(N)) ≤ 4Cε

N∑
j=1

‖Vj‖L1
ε→0−−−→ 0.

Since C∞0 (R3) is a dense subspace of the Banach space (〈x〉−2
L3/2(R3)) ∩

L1(R3), (37) implies ‖Eε(εk) − Λ(ε)BĜ(k)A‖B(H(N)) → 0 as ε → 0 for gen-

eral Vj ’s which satisfies the assumption (7). The lemma follows because Λ(ε)
converges to the identity matrix. �

We have shown in Lemma 3.3 that biG0(kε)aj is of Hilbert-Schmidt type

for k ∈ C+
and it is well known that 1 + λj(ε)bjG0(kε)aj is an isomorphism

of H unless k2ε2 is an eigenvalue of Hj(ε) = −∆ + λj(ε)Vj (see [7]). Hence,
the absence of positive eigenvalues for Hj(ε) (see e.g. [10]) implies that 1 +

λj(ε)bjG0(kε)aj is an isomorphism in H for all k ∈ C+ \ (ε−1iEj(ε) ∪ {0})
where Ej(ε) = {k > 0: − k2 ∈ σp(Hj(ε))}. Thus, if we fix a compact set

Ω ⊂ C+ \ {0}. 1 + Dε(εk) is invertible in B(H(N)) for small ε > 0 and k ∈ Ω
and

1 +Mε(εk) = (1 +Dε(εk))(1 + ε(1 +Dε(εk))−1Eε(εk)).

It follows that

(38) (1 +Mε(εk))−1 = (1 + ε(1 +Dε(εk))−1Eε(εk))−1(1 +Dε(εk))−1

and we need study the right hand side of (38) as ε→ 0.
We begin by studying ε(1 +Dε(εk))−1 and, since 1 +Dε(εk) is diagonal, we

may do it component-wise. We first study the case N = 1.

4.1. Threshold analysis for the case N = 1

When N = 1, we have Mε(εk) = Dε(εk).
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Lemma 4.3. Let N = 1, a = a1 and etc. and, let Ω be compact in C+ \ {0}.
Then, for any 0 < ρ < ρ0, ρ0 = (3−p)/2p > 1/2, we have following expansions
in Ω in the space of Hilbert-Schmidt operators B2(H):

bG0(kε)a = bD0a+ ikεbD1a+O((kε)1+ρ),(39)

Mε(εk) = bD0a+ ε
(
λ′(0)bD0a+ ikbD1a

)
+O(ε1+ρ),(40)

D0 =
1

4π|x− y|
, D1 =

1

4π
,(41)

where O((kε)1+ρ) and O(ε1+ρ) are B2(H)-valued functions of (k, ε) such that

‖O((kε)1+ρ)‖HS ≤ C|kε|1+ρ, ‖O(ε1+ρ)‖HS ≤ C|ε|1+ρ, 0 < ε < 1, k ∈ Ω.

Proof. Since =k ≥ 0 for k ∈ Ω, Taylor’s formula and the interpolation imply
that for any 0 ≤ ρ ≤ 1 there exists a constant Cρ > 0 such that

|eikε|x−y| − (1 + ikε|x− y|) | ≤ Cρ|εk|1+ρ|x− y|1+ρ.

Hence∣∣∣∣Dε(εk)(x, y)− b(x)a(y)

4π|x− y|
− ikεb(x)a(y)

4π

∣∣∣∣ ≤ Cρ|k|1+ρε1+ρ|x− y|ρ|b(x)a(y)|.

We have shown in Lemma 3.3 that Dε(εk) and bD0a are Hilbert-Schmidt oper-
ators and bD1a is evidently so as a, b ∈ L2(R3) (see the remark below Theorem
1.1). As 〈x〉b(x), 〈y〉a(y) ∈ L2p(R3), we have 〈x〉ρa(x), 〈x〉ρa(y) ∈ L2(R3) for
ρ < ρ0, and∫∫

R3×R3

|x− y|2ρ|b(x)a(y)|2dxdy ≤ C‖〈x〉ρb(x)‖2L2‖〈y〉ρa(y)‖2L2 .

This prove estimate (39). (40) follows from (39) and Taylor’s expansion of λ(ε).
This completes the proof of the lemma. �

We define

(42) Q0 = 1 + bD0a, Q1 = λ′(0)bD0a+ ikbD1a, bD1a = (4π)−1|b〉〈a|.
Regular case.

Definition. H = −∆+V (x) is said to be of regular type at 0 if Q0 is invertible
in H. It is of exceptional type if otherwise.

Lemma 4.4. Suppose N = 1 and that H = −∆ +V (x) is of regular type at 0.

Let Ω be a compact subset of C+
. Then

(43) lim
ε→0

sup
k∈Ω
‖ε(1 +Mε(εk))−1‖B(H) = 0.

Proof. Since Q0 = 1 + bD0a is invertible, (40) implies the same for 1 +Mε(εk)
for k ∈ Ω and small ε > 0 and,

lim
ε→0

sup
k∈Ω
‖(1 +Mε(εk))−1 −Q−1

0 ‖B(H) = 0.

(43) follows evidently. �
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An application of Lemma 3.4, Lemma 4.1 and Lemma 4.4 to (21) and (22)
immediately produces the following proposition for the case N = 1.

Proposition 4.5. Suppose H = −∆ + V is of regular type at 0. Then:

(1) As ε→ 0, W+
Y,ε converges strongly to the identity operator.

(2) Let Ω0 ⊂ C+
be compact. Then, a(HY (ε) − k2)−1b − aG0(k)b → 0 in

the norm of B(H) as ε→ 0 uniformly with respect to k ∈ Ω0.
(3) Let Ω1 b C+. Then, lim

ε→0
sup
k∈Ω1

‖(HY (ε)− k2)−1 −G0(k)‖B(H) = 0.

Exceptional case. Suppose next that Q0 is not invertible and define

M =: KerQ0, N = KerQ∗0, Q∗0 = 1 + aD0b.

By virtue of the Riesz-Schauder theorem dimM = dimN are finite and M
and N are dual spaces of each other with respect to the inner product of H.
Let S be the Riesz projection onto M.

Lemma 4.6. (1) aD0a is an isomorphism fromM onto N and bD0b from
N onto M. They are inverses of each other.

(2) (aϕ,D0aϕ) is an inner product on M and (bψ,D0bψ) on N .
(3) For an orthonormal basis {ϕ1, . . . , ϕn} of M with respect to the inner

product (aϕ,D0aϕ), define ψj = aD0aϕj, j = 1, . . . , n. Then:
(a) {ψ1, . . . , ψn} is an orthonormal basis of N with respect to (bψ,

D0bψ).
(b) {ϕ1, . . . , ϕn} and {ψ1, . . . , ψn} are dual basis of M and N respec-

tively.
(c) Sf = 〈f, ψ1〉ϕ1 + · · ·+ 〈f, ψn〉ϕn, f ∈ H.

Proof. (1) Let ϕ ∈ M. Then, ϕ = −bD0aϕ and aD0aϕ = −aD0b · aD0aϕ.
Hence aD0aϕ ∈ N . Likewise bD0b maps N into M. We have

bD0b · aD0aϕ = (bD0a)2ϕ = ϕ, ϕ ∈M,

aD0a · bD0bψ = (aD0b)
2ψ = ψ, ψ ∈ N

and aD0a and bD0b are inverses of each other.
(2) Let ϕ ∈ M. Then aϕ ∈ L1 ∩ Lσ for some σ > 3/2 (see the proof of

Lemma 4.8 below) and âϕ ∈ L∞ ∩ Lρ for some ρ < 3 by Hausdorff-Young’s
inequality. It follows that

(aϕ,D0aϕ) =

∫
R3

|âϕ(ξ)|2

|ξ|2
dξ ≥ 0

and (aϕ,D0aϕ) = 0 implies aϕ = 0 hence, ϕ = −bD0aϕ = 0. Thus, (aϕ,D0aϕ)
is an inner product of M. The proof for (bψ,D0bψ) is similar.

(3) We have for any j, k = 1, . . . , n that

(bψj , D0bψk) = (baD0aϕj , D0baD0aϕk) = (−aϕj ,−D0aϕk) = δjk
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and {ψ1, . . . , ψn} is orthonormal with respect to the inner product (bψ,D0bψ).
Since n = dimN , it is a basis of N .

(ϕj , ψk) = (ϕj , aD0aϕk) = (aϕj , D0aϕk) = δjk, j, k = 1, . . . , n.

Hence {ϕj} and {ψk} are dual basis of each other. Because of this, (c) is a well
known fact for Riesz projections to eigen-spaces of compact operators ([9]).
This completes the proof of the lemma. �

The following lemma should be known for a long time. We give a proof for
readers’ convenience.

Lemma 4.7. Let 1 < γ ≤ 2 and σ < 3/2 < ρ. Then, the integral operator

(44) (Qγu)(x) =

∫
R3

〈y〉−γu(y)

|x− y|
dy

is bounded from (Lσ ∩ Lρ)(R3) to the space C∗(R3) of bounded continuous
functions on R3 which converge to 0 as |x| → 0:

(45) ‖Qγu‖L∞ ≤ C‖u‖(Lσ∩Lρ)(R3).

For R ≥ 1, there exists a constant C independent of u such that for |x| ≥ R

(46)

∣∣∣∣(Qγu)(x)− C(u)

|x|

∣∣∣∣ ≤ C ‖u‖Lσ∩Lρ〈x〉γ
, C(u) =

∫
R3

〈y〉−γu(y)dy.

Proof. We omit the index γ in the proof. Since |x|−1 ∈ L3,∞(R3), it is obvious
that Qu(x) is a bounded continuous function and that (45) is satisfied. Thus,
it suffices to prove (46) for |x| ≥ 100. Let Kx be the unit cube with center x.
Combining the two integrals on the left hand side of (46), we write it as

(Qγu)(x)− C(u)

|x|
=

1

|x|

(∫
Kx

+

∫
R3\Kx

)
(2yx− y2)〈y〉−γu(y)

|x− y|(|x− y|+ |x|)
dy

≡ I0(x) + I1(x).

When |x− y| ≤ 1 and |x| ≥ 100, |x|, 〈x〉, |y| and |x− y| are comparable in the
sense that 0 < C1 ≤ |x|/〈x〉 ≤ C2 < ∞ and etc. and we may estimate the
integral over Kx as follows:

(47) |I0(x)| ≤ C

|x|〈x〉γ−1

∫
Kx

|u(y)|
|x− y|

dy ≤ C

〈x〉γ
‖u‖Lρ(Kx).

We estimate the integral I1(x) by splitting it as I1(x) = I10(x) + I11(x):

I10(x) =
−1

|x|

∫
R3\Kx

y2〈y〉−γu(y)

|x− y|(|x− y|+ |x|)
dy,

I11(x) =
1

|x|

∫
R3\Kx

2yx〈y〉−γu(y)

|x− y|(|x− y|+ |x|)
dy.
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Since |x− y|+ |x| ≥ C〈x〉γ−1〈y〉2−γ for |x| ≥ 100, Hölder’s inequality implies

(48) |I10(x)| ≤ C

|x|〈x〉γ−1

∫
R3\Kx

|u(y)|
|x− y|

dy ≤ C

〈x〉γ
‖u‖Lρ(R3).

Let σ′ be the dual exponent of σ. Then, σ′ > 3 and via Hölder’s inequality

(49) |I11(x)| ≤ C

∫
R3

(
〈y〉1−γ

〈x− y〉(〈x〉+ 〈y〉)

)σ′
dy

1/σ′

‖u‖Lσ(R3).

If |x| < 100|y|, then 〈y〉γ−1
(〈x〉+ 〈y〉) ≥ C〈x〉γ and

(50)

∫
|x|<100|y|

(
〈y〉1−γ

〈x− y〉(〈x〉+ 〈y〉)

)σ′
dy

1/σ′

≤ C

〈x〉γ
‖〈x〉−1‖Lσ′ .

When |x| > 100|y|, we may estimate for 1 < γ ≤ 2 as

〈y〉1−γ

〈x− y〉(|x|+ |y|)
≤ C

〈x− y〉〈x〉γ
.

It follows that

(51)

∫
|x|>100|y|

(
〈y〉1−γ

〈x− y〉(〈x〉+ 〈y〉)

)σ′
dy

1/σ′

≤ C

〈x〉γ
‖〈x〉−1‖Lσ′ .

Estimates (50) and (51) imply

(52) |I11(x)| ≤ C

〈x〉γ
‖u‖Lσ .

Combining (52) with (48), we obtain (46). �

Lemma 4.8. (1) The following is a continuous functional on N :

N 3 ϕ 7→ L(ϕ) =
1

4π

∫
R3

a(x)ϕ(x)dx =
1

4π
〈a, ϕ〉 ∈ C.

(2) For ϕ ∈ N , let u = D0(aϕ). Then,
(a) u is a sum u = u1 + u2 of u1 ∈ C∞(R3) ∩ L∞(R3) and u2 ∈

(W
3
2 +ε,2 ∩W 2, 32 +ε)(R3) for some ε > 0. It satisfies

(53) (−∆ + V )u(x) = 0.

(b) u is bounded continuous and satisfies

(54) u(x) =
L(ϕ)

|x|
+O

(
1

|x|2

)
, |x| → ∞.

(c) u is an eigenfunction of H with eigenvalue 0 if and only if L(ϕ) =
0 and it is a threshold resonance of H otherwise.

(3) The space of zero eigenfunctions in N has codimension at most one.
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Proof. (1) Since a ∈ L2, |L(ϕ)| ≤ (4π)−1‖a‖L2‖ϕ‖L2 .

(2a) Assumption (7) implies a(x) = 〈x〉−1
ã(x) with ã ∈ (L2p∩L2q)(R3) and

1 ≤ 2p < 3 and 2q > 6. It follows by Hölder’s inequality that ãϕ ∈ L 6
5−ε∩L 3

2 +ε

for an ε > 0. Using the the Fourier multiplier χ(D) by χ ∈ C∞0 (R3) such that
χ(ξ) = 1 for |ξ| ≤ 1,

χ(D)u =
1

(2π)
3
2

∫
R3

eixξχ(ξ)û(ξ)dξ,

we decompose u:

u = u1 +u2, u1 = χ(D)D0(aϕ), u2 = {(1−χ(D))(1−∆)D0}(1−∆)−1(aϕ).

Since aϕ ∈ L1(R3) it is obvious that

u1(x) =
1

(2π)3/2

∫
R3

eixξχ(ξ)
âϕ(ξ)

|ξ|2
dξ ∈ C∞(R3), lim

|x|→∞
∂αu1(x) = 0

for all α. Since (1−χ(ξ))(1 + |ξ|2)|ξ|−2 is a symbol of Hörmander class S0, the
multiplier (1−χ(D))(1−∆)D0 is bounded in any Sobolev space W k,p(R3) for
1 < p <∞ by Mikhlin’s theorem and,

(1−∆)−1(aϕ) ∈W 2, 32 +ε(R3) ∩W 3
2 +ε,2(R3)

for an ε > 0 by the Sobolev embedding theorem. It follows that

u2 ∈W 2, 32 +ε(R3) ∩W 3
2 +ε,2(R3),

in particular, u is bounded and Hölder continuous. If (1 + bD0a)ϕ = 0, then

a(1 + bD0a)ϕ = (1 + V D0)aϕ = (−∆ + V )D0aϕ = 0

and (−∆ + V )u(x) = 0.
(2b) We just proved that u is bounded and Hölder continuous. We use the

notation in the proof of Lemma 4.7. We have aϕ = −V D0(aϕ) and

D0(aϕ)(x) =
1

4π

(∫
Kx

+

∫
R3\Kx

)
〈y〉−1

ã(y)ϕ(y)dy

|x− y|
= I1(x) + I2(x).

Since 〈y〉 is comparable with 〈x〉 when |x− y| < 1,

|I1(x)| ≤ C〈x〉−1‖ãϕ‖
L

3
2
+ε‖|x|−1‖Lτ (Kx), τ = 3+2ε

1+2ε < 3.

For estimating the integral over R3 \ Kx, we use that ãϕ ∈ L
6
5−ε for some

0 < ε < 1/5. Let δ = (6 − 5ε)/(1 − 5ε). Then, δ > 6 and Hölder’s inequality
implies

|I2(x)| ≤ C‖ãϕ‖
L

6
5
−ε

(∫
R3

dy

〈x− y〉δ〈y〉δ

) 1
δ

≤
C‖ãϕ‖

L
6
5
−ε

〈x〉
.

Hence, aϕ = −V D0(aϕ) ∈ 〈x〉−3
(Lp ∩ Lq)(R3) and Lemma 4.7 with γ = 2

implies statement (2b).
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Statements (2a) and (2b) obviously implies (2c). (3) follows from (1) and
(2c). �

We distinguish following three cases:

Case (a): N ∩Ker (L) = {0}. Then, Lemma 4.8 implies dimN = 1, H has no
zero eigenvalue and has only threshold resonances {u = D0(aϕ) : ϕ ∈ N}.
Case (b): N = Ker (L). Then, {u = D0(aϕ) : ϕ ∈ N} consists only of eigen-
functions of H with eigenvalue 0.

Case (c): {0} $ N ∩Ker (L) $ N . In this case H has both zero eigenvalue and
threshold resonances.

In case (c), we take an orthonormal basis {ϕ1, ϕ2, . . . , ϕn} of N such that
ϕ2, . . . , ϕn ∈ Ker (L) and ϕ1 ∈ Ker (L)⊥ such that L(ϕ1) > 0 which uniquely
determines ϕ1.

We study ε(1 + Mε(εk))−1, Mε(εk) = λ0(ε)bG0(εk)a as ε → 0 by applying
the following Lemma 4.9 due to Jensen and Nenciu ([8]). We consider the case
(c) only. The modification for the cases (a) and (b) should be obvious.

Lemma 4.9. Let A be a closed operator in a Hilbert space H and S a projec-
tion. Suppose A+ S has a bounded inverse. Then, A has a bounded inverse if
and only if

B = S − S(A+ S)−1S

has a bounded inverse in SH and, in this case,

(55) A−1 = (A+ S)−1 + (A+ S)−1SB−1S(A+ S)−1.

We recall (40) and (42). We apply Lemma 4.9 to

(56) A = 1 +Mε(εk) ≡ 1 + λ(ε)bG0(εk)a.

We take as S the Riesz projection onto the kernel M of Q0 = 1 + bD0a. Since
bD0a is compact, Q0 + S is invertible. Hence, by virtue of (40), A+ S is also
invertible for small ε > 0 and the Neumann expansion formula yields,

(A+ S)−1 = (Q0 + εQ1 +O(ε2) + S)−1

=
(

1 + ε(Q0 + S)−1Q1 +O(ε2)
)−1

(Q0 + S)−1

= (Q0 + S)−1 − ε(Q0 + S)−1Q1(Q0 + S)−1 +O(ε2).(57)

Since S(Q0 + S)−1 = (Q0 + S)−1S = S, the operator B of Lemma 4.9 corre-
sponding to A of (56) becomes

(58) B = εSQ1S +O(ε2), sup
k∈Ω
‖O(ε2)‖B(H) ≤ Cε2,

where Ω b C+ \ {0}. Take the dual basis ({ϕj}, {ψj}) of (M,N ) defined in
Lemma 4.6. Then, bD0aϕ = −ϕ for ϕ ∈ M, (a, ϕj) = 0 for 2 ≤ j ≤ n and
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(ψj , b) = (aD0aϕj , b) = −(ϕj , a) imply

SQ1S = S(λ′(0)bD0a+ ikbD1a)S = −λ′(0)S − ik

4π
|(a, ϕ1)|2(ϕ1 ⊗ ψ1).

It follows from (58) that uniformly with respect to k ∈ Ω we have

(59)

∥∥∥∥∥∥εB−1+

(
λ′(0) + i

k|(a, ϕ1)|2

4π

)−1

ϕ1 ⊗ ψ1+λ′(0)−1
n∑
j=2

ϕj ⊗ ψj

∥∥∥∥∥∥ ≤ Cε.
Then, since ‖(A+ S)−1‖B(H) is bounded as ε→ 0 and k ∈ Ω and

lim
ε→0

sup
k∈Ω

(‖S(A+ S)−1 − S‖B(H) + ‖(A+ S)−1S − S‖B(H) = 0,

(55), (57) and (59) imply the first statement of the following proposition.

Proposition 4.10. Let N = 1 and the assumption (7) be satisfied. Suppose
that H is of exceptional type at 0 of the case (c). Then, with the notation of
Lemma 4.6, uniformly with respect to k ∈ Ω in the operator norm of H we have
that

lim
ε→0

ε(1 +Dε(εk))−1(60)

= −
(
λ′(0) + i

k|(a, ϕ1)|2

4π

)−1

ϕ1 ⊗ ψ1 − λ′(0)−1
n∑
j=2

ϕj ⊗ ψj ≡ L

and that

(61)
〈
a| (60)

∣∣b〉 = −
(
α− ik

4π

)−1

, α = − λ′(0)

|(a, ϕ1)|2
.

The same result holds for other cases with the following changes: For the case
(a) replace ϕ1 and ψ1 by ϕ and ψ respectively which are normalized as ϕ1 and
ψ1 and, for the case (b) set ϕ1 = ψ1 = 0.

4.2. Proof of Theorem 1.1

Let Lj , j = 1, . . . , N be the L of (60) corresponding to Hj(ε) = −∆ +
λj(ε)Vj . Then, applying Proposition 4.10 to Hj(ε), we have

(62) lim
ε→0

ε(1 +Dε(εk))−1 = ⊕Nj=1Lj ≡ L̃.

It follows by combining Lemma 4.2 and (62) that

(63) lim
ε→0

(
1 + ε(1 +Dε(εk))

)−1
Eε(εk) = 1 + L̃|B〉Ĝ(k)〈A|.

We apply the following lemma due to Deift ([4]) to the right of (63).

Lemma 4.11. Suppose that 1 + 〈A|L̃|B〉Ĝ(k) is invertible in B(CN ). Then,

1 + L̃|B〉Ĝ(k)〈A| is also invertible in B(H(N)) and

(64) 〈A|(1 + L̃|B〉Ĝ(k)〈A|)−1 = (1 + 〈A|L̃|B〉Ĝ(k))−1〈A|.
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Proof. Since a1, . . . , aN ∈ L2(R3), |A〉 : CN → H(N) and 〈A| : H(N) → CN are
both bounded operators. Then, the lemma is an immediate consequence of
Theorem 2 of [4]. �

For the next lemma we use the following simple lemma for matrices. Let

A =

(
W X
Y Z

)
, B =

(
0 0
0 V

)
be matrices decomposed into blocks.

Lemma 4.12. Suppose V and 1 + V Z are invertible. Then,(
1 +

(
0 0
0 V

)(
W X
Y Z

))−1

exists and

(65)

(
1 +

(
0 0
0 V

)(
W X
Y Z

))−1(
0 0
0 V

)
=

(
0 0
0 (V −1 + Z)−1

)
.

Proof. It is elementary to see(
1 +

(
0 0
0 V

)(
W X
Y Z

))−1

=

(
1 0
V Y 1 + V Z

)−1

(66)

=

(
1 0

−(1 + V Z)−1V Y (1 + V Z)−1

)
and the left side of (65) is equal to(

0 0
0 (1 + V Z)−1V

)
=

(
0 0
0 (V −1 + Z)−1

)
which proves the lemma. �

Lemma 4.13. Let k ∈ Ω. Then, 1 + 〈A|L̃|B〉Ĝ(k) is invertibe in CN . If
H1, . . . ,HN are arranged in such a way that H1, . . . ,Hn1 have no resonances
and Hn1+1, . . . ,HN do and, N = n1 + n2, then

(67) (1 + 〈A|L̃|B〉Ĝ(k))−1〈A|L̃|B〉 =

(
On1n1

On1n2

On2n1
−Γ̃(k)−1

)
,

where On1n1
is the zero matrix of size n1 × n1 and etc. and

(68) Γ̃(k) =
((
αj −

ik

4π

)
δj,` − Gk(yj − y`)δ̂j`

)
j,`=n1+1,...,N

.

Proof. We let ϕj1 be the resonance of Hj , j = n1 + 1, . . . , N , corresponding to
ϕ1 of the previous section and define

(69) αj = − λ′(0)

|(aj , ϕj1)|2
.
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Then, Proposition 4.10 implies that,

〈A|L̃|B〉 =



0
. . .

0

−
(
αn2+1 − ik

4π

)−1

. . .

−
(
αn1+n2

− ik
4π

)−1


and we obtain (67) by applying Lemma 4.12 to the left of (67) with

V =


−
(
αn2+1 − ik

4π

)−1

. . .

−
(
αn1+n2 − ik

4π

)−1


and with (

W X
Y Z

)
= Ĝ(k). �

Lemma 4.11 and Lemma 4.13 imply that the following limit exists in B(H)
and

lim
ε→0

(
1 + ε(1 +Dε(εk))−1Eε(εk)

)−1
=
(
1 + L̃|B〉Ĝ(k)〈A|

)−1

and hence so does

(70) lim
ε→0

ε
(
1 +Mε(εk)

)−1
=
(
1 + L̃|B〉Ĝ(k)〈A|

)−1L̃.

Completion of the proof of Theorem 1.1. By the assumption of the the-
orem, we may assume n1 = 0 in Lemma 4.13. Abusing notation, we write

Ĝ(N)
k u = (Ĝku)(N), Ĝku =

1

4π

∫
R3

eik|x|u(x)

|x|
dy.

We first prove (9) for the + case. We let u, v ∈ D∗ and R > 0. Then, (23) and
(70) imply that

(71) ε2((1 +Mε(−εk))−1Λ(ε)B(G0(kε)−G0(−kε))(N)Uεu,AG0(kε)(N)Uεv)

converges as ε→ 0 to

(72) (〈A|(1 + L̃|B〉Ĝ(−k)〈A|)−1L̃|B〉〈(G(N)
k − G(N)

−k )u,G(N)
k v)

uniformly with respect to k ∈ [R−1, R]. Here we have

〈A|(1 + L̃|B〉Ĝ(−k)〈A|)−1L̃|B〉 = (1 + 〈A|L|B〉Ĝ(−k))−1〈A|L|B〉(73)

= −Γ̃(−k)−1

by virtue of (64) and (67). Thus, (71) converges as ε→ 0 to

−(Γα,Y (−k)−1
(
Ĝk − Ĝ−k

)(N)
u, Ĝ(N)

k v)
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uniformly on [R−1, R]. Thus, replacing u and v respectively by τu and τv, we
obtain W+

Y,ε →W+
α,Y strongly as ε→ 0 in view of (15) and (21).

By virtue of (1) and (22), for proving the convergence (6) of the resolvent,
it suffices to show that as ε→ 0 in the strong topology of B(H)

ε2UεG0(kε)(N)A(1 +Mε(εk))−1Λ(ε)εBG0(kε)(N)Uε(74)

→ − |Ĝ(N)
k 〉Γα,Y (k)−1〈Ĝ(N)

k |

for every k ∈ C+ \ E . However, (23), (25) and (70) imply that for k ∈ C+ \ E
the first line of (74) converges strongly in B(H) as ε→ 0 to

(75) |G(N)
k 〉〈A|(1 + L̃|B〉Ĝ(k)〈A|)−1L̃|B〉〈G(N)

k |.
This is equal to the second line by virtue of (73) with k in place of −k. This
completes the proof of the theorem.
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