References
- S. Agmon, Spectral properties of Schrodinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 2, 151-218.
- S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden, Solvable models in quantum mechanics, second edition, AMS Chelsea Publishing, Providence, RI, 2005.
- H. D. Cornean, A. Michelangeli, and K. Yajima, Two-dimensional Schrodinger operators with point interactions: Threshold expansions, zero modes and Lp-boundedness of wave operators, Rev. Math. Phys. 31 (2019), no. 4, 1950012, 32 pp. https://doi.org/10.1142/S0129055X19500120
- P. A. Deift, Applications of a commutation formula, Duke Math. J. 45 (1978), no. 2, 267-310. http://projecteuclid.org/euclid.dmj/1077312819 https://doi.org/10.1215/S0012-7094-78-04516-7
-
G. Dell'Antonio, A. Michelangeli, R. Scandone, and K. Yajima,
$L^p$ -boundedness of wave operators for the three-dimensional multi-centre point interaction, Ann. Henri Poincare 19 (2018), no. 1, 283-322. https://doi.org/10.1007/s00023-017-0628-4 - H. Holden, Konvergens mot punkt-interaksjoner, (In Norwegian) Cand. Real. Thesis, University of Oslo, Norway, 1981.
- A. D. Ionescu and W. Schlag, Agmon-Kato-Kuroda theorems for a large class of perturbations, Duke Math. J. 131 (2006), no. 3, 397-440. https://doi.org/10.1215/S0012-7094-06-13131-9
- A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds, Rev. Math. Phys. 13 (2001), no. 6, 717-754. https://doi.org/10.1142/S0129055X01000843
- T. Kato, Perturbation of Linear Operators, Springer Verlag. Heidelberg-New-York-Tokyo, 1966.
- H. Koch and D. Tataru, Carleman estimates and absence of embedded eigenvalues, Comm. Math. Phys. 267 (2006), no. 2, 419-449. https://doi.org/10.1007/s00220-006-0060-y
- S. T. Kuroda, On the existence and the unitary property of the scattering operator, Nuovo Cimento 12, 1959.
- S. T. Kuroda, An Introduction to Scattering Theory, Lecture Notes Series, 51, Aarhus Universitet, Matematisk Institut, Aarhus, 1978.
- M. Reed and B. Simon, Methods of Modern Mathematical Physics. I, second edition, Academic Press, Inc., New York, 1980.
-
K. Yajima,
$L^1$ and$L^{\infty}$ -boundedness of wave operators for three dimensional Schrodinger operators with threshold singularities, Tokyo J. Math. 41 (2018), no. 2, 385-406. https://projecteuclid.org/euclid.tjm/1520305215 https://doi.org/10.3836/tjm/1502179271