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EXISTENCE OF THE THIRD POSITIVE RADIAL
SOLUTION OF A SEMILINEAR ELLIPTIC
PROBLEM ON AN UNBOUNDED DOMAIN

Bong Soo Kot Anp YonG-HoOON LEET

ABSTRACT. We prove the multiplicity of ordered positive radial
solutions for a semilinear elliptic problem defined on an exterior
domain. The key argument is to prove the existence of the third
solution in presence of two known solutions. For this, we obtain
some partial results related to three solutions theorem for certain
singular boundary value problems. Proof are mainly based on the
upper and lower solutions mcthod and degree theory.

1. Introduction

In this paper, we prove the existence of 2N — 1 distinct ordered pos-
itive radial solutions for the following problem:

A U+ ,\g(lme(u) =0 i (2 = R“ \B(Ov T,,),
(P)) |.,.1;iglx u(z) =0,
u=20 on J§2,

where A is a positive real parameter, B(0,r,) is an open ball centered
at 0 with the radius r,, n» > 3. Assume that f € C(/,R), I C R and
g € C'([ro,oc),R1)) satisfy the following conditions:
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(fo) there exists a positive constant M such that
flu)—flv)>-Mu-v) fuvel, u>w.
(fi) There exist exactly N positive numbers 0 < a1 < az < --- < an
such that f(a;))=0 forall ¢=1,---,N.
(f2) [0,an] C I and there exists a positive constant Ky such that
f'(a;) < =Ky foralli=1,---,N.

(f3) f:i f(u)du >0 for all s € [0,a;) and for alli=1,--- ,N.

(9) frc:o rg(r)dr < co.

If Q2 is a bounded open domain with smooth boundary, then there have
been several studies ([3], [4], [6], [7], [10], [11]) which prove generally that
there exists A, > 0 such that if A > A,, then problem (P,) has at least
2N — 1 ordered positive solutions. In those studies, the boundedness of
Q is crucial. If € is unbounded, we might not use the compactness on
the operator or the functional which are induced from the problem (Py).
So the question of the multiplicity of positive solutions is nontrivial.

To obtain the radial solutions, we rewrite problem (Py), via transfor-

2-~n .
mations r = |z|, s =r?7" and ¢t = “>=2= ([8]), as
o

(1x)

Transforming (Py) to (1)), we see that the coefficient function ¢ in
(1) is of C[0,1] if g in (Py) satisfies lim, o 72"~ Vg(r) < co and q is
singular at ¢ = 1 if lim, ., 72 Yg(r) = oco. Since the result for the
regular case can be proved by exactly the same way as the singular case
with less restrictions, our interest will be mainly focused at the singular
case and, thus, a crucial step for our goal will be to establish a theorem
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of existence of the third solution for problem (1,) in the case with two
pairs of upper and lower solutions.

More precisely, suppose that 7, 9, and w, W are pairs of lower solutions
and upper solutions of (1) such that 4(¢) < @(¢t), v(t) < 9(t), w(t) < w(t)
for all t € [0,1] and w(tg) > v(tg) for some to € [0,1]. If ¢ is Holder
continuous on the interval [0, 1], then there is a solution in the ordered
interval [0,0] = {u € C([0,1]) : 9(t) < u(t) < ¥(t),t € [0,1]} and a
solution in {w,®]. And furthermore it is known that there exists a third
solution in the set [0, @] \ ([7, W] U [w,d]). ([1], [11])

In the case that ¢ is singular at ¢ = 0 and/or 1, the existence of
solution given a pair of lower solution and upper solution, v and ¥, with
o(t) < o(t) for all ¢ € [0,1], is known under additional conditions ([8],
[9]). Hence, there arises a question, does there exist the third solution if
there are pairs of lower solutions and upper solutions as in the preceding
paragraph? As far as the authors know, the complete answer has not
been made yet and some partial results for singular problems have been
studied by Parter [13] and Ben-Naoum and De Coster [2], but neither are
applicable in problem (Py). Because. in [2] we can understand necessity
of strict sense of upper and lower solutions somehow. We also note
that the singular function ¢ in [13] plays the role of the coefficient of
damping term. The authors are able to get another partial answer for the
multiplicity for (1)) using Leray-Schauder degree and Green’s function.

This paper is organized as follows: In Section 2, we introduce fun-
damental theorems based on the method of upper and lower solutions.
In Section 3, we give a theorem of existence of the third solution for
singular problem (1)). In section 4, we study the multiplicity of positive
radial solutions for problem (P,) on an exterior domain R \ B(0,r).

2. Fundamental theorems for G-upper and G-lower solutions

In this section, we prove a fundamental existence theorem in terms of
general upper and lower solutions for singular boundary value problems
of the form:;

(2)

W+ flt,u) =0, 0<t<]1
u(0) = A, u(l) = B,

where f: D C (0,1) x R — R is continuous. We denote (0,00) by R™.
A solution u(-) means a function u € C[0,1] N C?(0,1) such that
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(t,u(t)) € D for all t € (0,1) and u”(t) + f(t,u(t)) =0 for all t € (0,1)
with u(0) = A and u(1) = B.

DEFINITION 1. a € C[0,1]NC?(0,1) is called a lower solution of (2)
if (t,a(t)) € Dforallt € (0,1) and

o"(t) + f(t, (b)) 2 0,
a(0) < A, a(l) < B.

Similarly, 8 € C[0,1] N C?(0,1) is called an upper solution of (2) if the
above inequalities are reversed.

If a, B € C[0,1] are such that a(t) < §(¢) for all ¢t € [0, 1], we define
the set
Df ={(t,u) € (0,1) x R: a(t) S u < A1)}

The well-known fundamental theorem on upper and lower solutions
method for problem (2) is as follows;

THEOREM 1. ([9]) Let a, B be, respectively, a lower solution and an
upper solution of (2) such that
(a1) aft) < B(t) for allt € [0,1].
((12) Dg C D.
Assume also that there is a function h € C ((O, 1), R+) such that
(a3) |f(t,w)| < h(t) for all (t,u) € D? and
(ae) Jy s(1—s)h(s)ds < oo.
Then problem (2) has at least one solution u(-) such that a(t) < u(t) <
B(t) for all t € (0,1).

We give definitions of somewhat general type of upper and lower
solutions.

DEFINITION 2. We say that a continuous function «(-) : [0,1] — R is
a G-lower solution of (2) if & € C?(0, 1) except at finite points 1y, -+ , 7
with 0 < 7 < -+ < 7, < 1 such that

L) at each 7;, there existo/(r;™), &/(7; %) such that
' o (7)< d (%) and
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o' (t)+ f(t,a(t)) >0 for allte (0,1)\ {r, -,k
(L2) <A, a(1) < B.

We also say that a continuous function 3(:) : [0,1] — R is a G-upper
solution of (2) if 8 € C?(0,1) except at finite points o1, -+, 0., with
0<oy <+ <o, <1 such that

(Uy) at each oy, there exist 3'(c;7), B'(o;1) and B'(o;7) > 8'(0;™)
and

(Uy) {ﬂ"(t): 0 for allte (0,1)\ {01, ,0m},

f ) <
4, A(1) > B.

The fundamental theorem on G-upper and G-lower solutions is given
as follows. The proof is basically similar to that of [9] and we give it for
reader’s convenience.

THEOREM 2. Let o and 8 be, respectively, a G-lower solution and
a G-upper solution of (2) satisfying (a,) and (az) in Theorem 1. Also

assume (a3) and (ay). Then (2) has at least one solution u such that

a(t) <u(t) < 8(t) forallte (0,1).

Proof. Define a modified function of f as follows;

st o) - 428 it g,
F(t,iu) =< f(tw) ifa(t) <u< B,
F(t,alt)) — 1‘-1_+—C:fzt—) if u < aft).
Then F : (0,1) x R — R is continuous and
(3) [F(t,u)] < m(a, B) + h(t)

for all (t,u) € (0,1) x R, where m(a, ) = ||a]« + |8/ + 1.
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Consider the problem

(4)

We claim that any solution u of (4) satisfies a(t) < u(t) < B(¢) for all
t € [0,1]. Suppose, by contradiction, that a £ u. So let (a — u)(t,) =
maxco,1)(a—u)(t) > 0.If t, € (0,1)\ {71, - ,7}. Then (a—u)"(t,) <
0. Since u(t,) < a(t,),

02> (a - u)"(to) = a”<t0) + F(tmu(to))

_ a”(to) + f(to,a(to)) - ‘t“/g—ttﬁﬁ%—)
5 olto) — ufto)

T12w,) %

a contradiction.
Ift, =7 forsome i =1, ---, n, then since @ — u attains its positive
maximum at 7;,

(a—u)(r7) >0 and (a—u)(r;") <0.
Thus

0< (@-w(r) ~ (a=w'(r)
= a/(r) = al(r).

This leads to a contradiction to the definition of G-lower solution.
Lett,=0o0r1

0 < (a—u)(0)=ca(0)—-A<O0,
0<(a—u)(1)=a(0)-B<O,
a contradiction. Therefore a(t) < u(t) < B(t), and so we can conclude
u is a solution of (2). We can prove for the case that u £ 8 by a similar

fashion. We claim that (4) has at least one solution. It is well-known
that problem (4) is equivalently written as

v=Tu on X = C|0,1],
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where

Tu(t)=A+ (B— A)t+ /l G(t,s)F(s,u(s))ds
0

and G(t, s) is the Green’s function explicitly written as

o s(1—t), 0<s<t,
(,5) = t1-s), t<s<l.

By (3) and (a4), T : X — X is well-defined, continuous and TX is
bounded. If T is a compact operator, then the proof of the existence
of a solution is done by Schauder fixed point Theorem. To show T
compact, making use of Arzela-Ascoli Theorem, it suffices to show that
TX is equicontinuous. Let ¢t € (0, 1), then by (3) we get

d
ETU(t)l

1

< [B—A|+/0 s[F(s,u(s))Id.9+/t (1 — 8)|F(s, u(s))|ds
< IB—A|+&‘;’@(t2+(1_t)2)+/t sh(s)ds+/1(1—s)h(s)ds
0 t

2184+ ™0 e o) a0,

If v € L1(0,1), then the proof follows from that

/o lv(s)|ds < tEI{lﬁ(]. ~t)/o sh(s)ds + lim t/t (1 — s)h(s)ds

t—0t

1
+2/O s(1 — s)h(s)ds

1
< 4/ s(1 —s)h(s)ds < oo. 0
0

REMARK 1. It is easy to see that if we replace (a4) by the condition
ful sh(s)ds < oo, then the solution u which we have found belongs to

C*((0,1]). Similarly, if [ (1 — s)h(s)ds < oo, then u € C1([0,1)).
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3. Multiplicity

In this section, we prove the existence of three solutions for the prob-
lem

(5)

u' +qt)f(u) =0, 0<t<l,
u(0) = 0 =u(1),

under certain assumptions for two pairs of G-lower solutions and G-
upper solutions. In what follows, we assume that ¢ € C((0,1),R") is
singular at t =0 and/or 1, and f : I C R — R is continuous. We know
that problem (5) is equivalent to

u=Tu on C[0,1],

where T is given by

Tu(t) = /D G(t, 5)a(s)  (u(s))ds

and G(t,s) is the Green’s function given in the proof of Theorem 2.
It is well-known ([5], [8]) that T is completely continuous on C[0, 1]
if ¢ satisfies

1
(©) /0 s(1 — s)q(s)ds < oo.

DEFINITION 3. For any u, v € C[0,1], v < v means that u(t) < v(¢),
for all t € [0,1] but u # v on [0, 1].

Let Cy[0,1] = {u € C[0,1] : u(0) = 0 = u(1)}. If ¢ satisfies (C), then
the problem

(6)

u +q(t)=0, 0<t<]1,
u(0) =0 = u(1)

has the unique solution e € C[0,1] N C?(0,1). Let

C.[0,1] = {u € Cy[0,1] : ve(t) < u(t) < de(t), t €[0,1] and v, 6 € R}.
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Then C.[0,1] is a linear subspace of C[0,1]. For any u € C.[0,1], we
define a norm

llulle = inf{A > 0: =Xe(t) < u < Ae(t),t € [0,1]}.

Then C.[0,1] is a Banach space with respect to the norm || - ||, ([1]). We
claim that
T(C([0,1])) c C.[0,1].

Indeed, for any u € C[0, 1],
(Tu — be)’ (t)

i

—q(t) f(u(?)) 4 dq(t)
g(t) [ f(u(?)) + 6],

for all t € (0,1). Since Tu(0) — de(0) = 0 = T'u(l) — de(l), if we choose
d > 0 sufficiently large so that (T'u — de)”(¢) > 0, then

Tu < de.

By a similar method, we can show the existence of constant v such
that
vye < Tu.

Therefore,
Tu € C.[0,1].

From now on, we only consider the operator T : C.[0,1] — C.[0,1].
Since the embedding C.[0,1] — C[0, 1] is continuous and T : C[0,1]
C.[0,1] is also completely continuous, so is T on C.[0,1]. ([1])

We now state and prove maximum principle for certain linear opera-
tors.

LEMMA 1. Let g € C([a, b], (0,00)), and K > 0 given. If u € C?[a, b]
satisfies
v~ Kq(t)u >0, a<t<hb,
u(a) <0, u(b) 0.
Then u(t) < 0 for all t € [a,b].

Assume, moreover, that there exists T € (a,b) such that u(r) = Q.
Then u(t) =0 for all t € [a, b].
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LEMMA 2. Let g € C((a,b), (0,00)) may be singular at t = a and/or
b and K > 0 given. If u € Cla,b] N C?(a,b) satisfies
v — Kq(t)u >0, a<t<hb,
u(a) <0, u(b) <0.
Then u(t) <0 for all t € [a, b].

Assume, moreover, that there exists T € (a,b) such that u(r) = 0.
Then u(t) = 0 for all t € [a, b].

Here we give the proof of Lemma 2. Lemma 1 is well known. ([14])

Proof. Tt is not hard to show that for h € C((a,b),[0,00)) u €
Cla,b] N C?(a,b) is a solution of

v’ — Kq(t)u = h(t), a<t<b,
u(a) = A, u(b) = B,

then u satisfies

- infte:_(a,b) h(t) }

<
u(t) = max {A’ B’ K'll’lfte(a,b) q(t)

This fact implies the first part of Lemma 2. We also notice that if
v € Clty,t2] N C%(t1,t2) satisfies

v’(t) — Kq(t)v(t) > 0 for t; <t < tg,

then v cannot have a nonnegative relative maximum on (¢, ts).

We now prove the second part by contradiction. Suppose, without
loss of generality, that there exists t, € (7,b) such that u(t,) < 0. For
a > 0, let z(t) = e**=7) — 1, then 2(t) > 0,= 0 or < 0 according to
t>7T, t=Tort< T, respectively. Take ¢ with 0 < ¢ < —:((fo")) and let
v(t) = u(t) + ez(t). Then

V() — Kq(t)u(t) = u”(t) — Kq(t)u(t) + €[z"(t) — Kq(t)z(t)],

and we know that u”(t) — Kq(t)u(t) > 0.
If t < 7, then 2"(t) — Kq(t)z(t) > 0, and thus v"(t) — Kq(t)v(t) > 0 for
all t € (a, 7).
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If t = 7, then 2”(t)— Kq(t)z(t) = 2"(t) > 0, and thus v" (t)— Kq(t)v(t) >
0 for all ¢ € (a,7). We notice that 2”’(t) — Kq(t)z(t) = e*t~7[a? —
Kq(t)] + Kq(t), and Kq(t) > 0 for all ¢ € (a,b).

If t € (1,t,), consider an interval J = [r — §,t,] for some § > 0 with
7 — & > a. In this case, if ¢t € J and t > 1, then taking o? > Kgq,,, where
gm = max; q(t), o’ —Kq(t) > o® - Kg,, > 0. Thus v (t)— Kq(t)v(t) > 0.
Consequently,

v'(t) — Kq(t)u(t) >0 forallt € J.

On the other hand, v(7 — §) < 0 if § is sufficiently small and v(t,) < 0,
but v(7) = u(r) = 0. This implies that the maximum of v on J occurs
on the interior of J and is nonnegative. This leads to a contradiction by
well known Maximum Principles and completes the proof. O

The following lemma seems to be well known. However, we could not
find any references for that, and so we prove it.

LEMMA 3. Assume (C') and (fy). Suppose that v and v are a G-lower
solution and a G-upper solution satisfying ¥ < ¥ and none of them are
solutions of (5). Let w be a solution of (5) satisfying v < w < 0. Then
w satisfies

o(t) < w(t) < o(t) for allt € (0,1).

Proof. Let w be a solution of problem (5) satisfying

o(t) <w(t) <o(t) forall te(0,1).

We show that ©(t) < w(t) for all £ € (0,1), and the other inequality can
be shown by a similar way.

() Atm, i=1,-- ,n.

Suppose that v(7;) = w(r;) for some 7, then (0 —w)(7;) = max,e(o,1(0 —
w)(t), and (0—w)'(7;7) >0, (v—w)'(r;7) < 0. Thus ¥'(r; ) -’ (r;t) > 0,
and this contradiction shows that

o(r) <w(r;) foralli=1,--- ,n.

(11) On (T,‘,Ti+1), 1:1 ,Il—].‘
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We get
(v —w)"(t) — Kq(t)(v - W)(t)
> —q®)[f(v(t) — flw(t)] — Kq(t)(®(t) - w(?))
> — Mq(t)(w(t) — (1)) — Kq(t)(0(t) — w(?t))

0]
(B = M)q(t)(w(t) —v(t)) 20 Vt € (7i;Tis1)
for sufficiently large K. By (i) we get

(0 —w)(r;) <0, (- w)(riy1) <O

Now suppose that there exists 7 € (7;, 7;+1) such that (7)) = w(7), then
by Lemma 1, ¥ = w on [r;, 7;41] and this contradicts to (i).
(iii)  On (0,m).
We get

(v —w)"(t) — Kq(t)(v —w)(t) >0 on (0,7,),
(7 —w)(0) <0, (o —w)(n)<O0.

Suppose that there exists 7 € (0,7;) such that 9(7) = w(r), then by
Lemma 2, ¥ = w on [0, 71] and this also contradicts to (i). We can show
similarly that #(¢) — w(t) < 0 for all ¢ € [r,, 1). Consequently,

o(t) <w(t) for all t € (0,1). a

We first give an existence theorem of the third solution when ¢ is
integrable. In this case, the solutions of problem (5) and the solution
e of problem (6) are of C!([0,1]) and Theorem 1 and Theorem 2 are
obviously make use of. We furthermore, give a restriction on the coeffi-
cient function ¢ so that lim,_,g+ ¢¢(¢) and lim,_,;- (1 — t)q(¢) exist. For
example, if q is decreasing near 0 and increasing near 1, then the limits
exist by the Monotone Convergence Theorem. Generally, if the limits
exist, then they are 0, since ¢ is integrable.

THEOREM 3. Assume (fy) and
(Hy) qe€ L*0,1)NnC(0,1) and both lim;_,q+ tq(t) and
lim, ;- (1 — t)q(t) exist.

Suppose also that there exist two pairs of G-lower and G-upper solutions
{v,0} and {w,w} such that t < 0, W < W, ¥ < W, W ;ﬁ ¥, none of them
are solutions of (5), and [v(t),w(t)] C I for allt € [0,1]. Then (5) has at
least 3 distinct solutions uy < us < ug such that uy € [0,7], uz € [w, W]
and us € [9,9) \ ([7,9) U [0, ®]), where [v,w] = {u € C,[0,1] : v < u <
w}.
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Proof. Let ¥ and ¥ be a G-lower solution and a G-upper solution of
(5) and let

Q= {ueC[0,1]:9(t) <u(t) <o(t), t €0,1]},
Q1 ={u € C.[0,1] s v(t) < u(t) <ot), te (0,1)}.

We denote 03, the interior of ©; in C.([0,1]). We know by Theorem 2
and Lemma 3 that there exists a solution w of problem (5) satisfying
w € Q4. Since w, e € C*(0, 1), it is obvious that w € C,([0, 1]). We claim
that w € Q3. For this, we first show that there exists €; > 0 such that

(7) w - v(t) > ere(t) for all t € (0,1).

The function w — % is of C[0,1] and (w —v)(t) > 0 for allt € (0,1). On
the other hand, the function e is of C'[0,1], e > 0 and concave on (0, 1)
50 that

0<e(0) <. —oo<e(l)<O.

If 9(t) < 0 for t = 0 and 1, then w — u(t) > 0 for all ¢ € [0,1] and (7) is
easily verified.

Let 9(t) = 0 for t = 0 or 1. Assume 7(0) = 0 and 9(d) — w(d) < 0
for some d € (0,7). Then for given o > 0, we may choose a positive

numbers € so that
w(d) — v(d)

O<e< ————.
‘ cxp(ad) —1

Let us define the function z by
z(t) = exp{at) — 1.
Then

(0 —w+ex)'(t) — Kq(t)(0 — w + €2)(t)
= (0 —w)"(t) — Kq(t)(T — w)(t) + (2" (t) — Kq(t)z(t))-

As we see in the proof of Lemma 3,
(@ —w)'(t) — Kq(t)(i — w)(t) >0 for allte (0,71)

it K > M.
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On the other hand, (Hp) implies that tq(t) is bounded on (0, |, for
arbitrarily fixed ¢ € (0,1), thus for o > Ksup{tg(t) : t € (0,71]} and
t € (0,d), we get the following inequalities by Mean Value Theorem;

2'(t) - Kqt)=(t) = exp(at) (a? — Kq(t)(1 - exp(—at))
= exp(at) (a® — aK exp(—af)tq(t))
> aexp(at)(a — Ktq(t)) >0
for some £ € (0,t). Therefore,

(T—w+ez)(t) — Kq(t) (o —w+e€2)(t) >0

for all t € (0,d) and (v—~w+€2)(0) = 0 and (v —w+€z)(d) < 0. Lemma
2 implies that the function ¥ — w + €z has the zero maximum value at
t = 0 in the interval [0,d]. Thus

v — t v(t) —
lim sup O-w+e)t) = lim sup M +ea <0
t—0+ t 0+ t
and consequently
t) — vt
lim inf M >ea > 0.
t—0t t

For the case 9(1) = 0, defining 2(¢) = exp(a(l — t)) — 1 and taking
a > Ksup{(l —t)q(t) : t € [r,, 1)}, we obtain

w(t) — v(t
timinf 20720 o,

t—1— 11—t
Combining this fact and properties of w — v and e described above, we
get (7). Similarly, for the functions o —w and e, there exists ea > 0 such
that

(8) 0 —w(t) > eze(t) for allt e (0,1).

Therefore, by (7) and (8), we obtain w € Qf and, thus, Qf # 0. If
u € 0¢, 25, the boundary of Q2§ with respect to Ce-topology and satisfies
u = Tu. Then u € §, since 9¢, 2 C 2 by the continuous embedding of
C.[0,1] into C[0, 1]. This implies that u is a solution of problem (5) with
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u € Q and thus, by the above argument, u € QY and this contradiction
shows that the Leray-Schauder degree dps(I — T,%,0) is well defined.

Now we compute drs(I—T,€2,0). Let us consider the modified prob-
lem

where )
qmﬂw»~%}§lﬁu>ww
Fltu) = { a)f(w) i 5(t) < u < ()
a(t) F(3(1)) - “11”159 if u < B(2).

Then F: (0,1) x R — R is continuous. Define the operator

Tu(t) = G(t,s)F(s,u(s))ds.

0

Then T is completely continuous on C, [0, 1]. Choose a positive real con-
stant § as

o> max{ swp g, =ty ey, Pl

+ x
min v<u<max ¥ o el ”f ” }
where g, = inf;¢(g.1) ¢(t)(> 0). Then

—de < T'(u) < de on [0,1] for all u € C[0,1].

Thus Im7T is contained in C,[0,1] and bounded by § with respect to
|| - ||e. Choose a ball B.(0,R) in C.[0,1] such that

ImT N C B.(0,R)
and consider the homotopy
ﬁ/,u =u — pTu.

Obviously h,, is completely continuous on C.[0,1] for all p € [0,1]. If
u € 8B, (0, R) and h,u = 0, then



454 Bong Soo Ko and Yong-Hoon Lee

Taking R big enough so that ué < R, dLs(il#, B.(0, R),0) is well-defined
and by the homotopy invariance,

drs(I — T, Be(0,R),0) = drs(I, B.(0, R),0) = 1.
Since I — T is equ}valent to I —T on , so is on Q¢ and by the excision
property for I — T, we get
drs(I —T,9%,0) = ds(I — T,95,0)
=dys(I - T,B.(0,R),0)
= drs(I, Be(0,R),0) = 1.
Let QS be the interior of
(w,w) = {u € Ce([0,1]) : w < u < W}
and 23 be the interior of
(v, W) = {u € Ce([0,1]) : ¥ <u<w}
in C.([0,1]). Then we also have
drs(I —T,95,0) =1,
drs(I -T,9Q3,0) =1.
Thus by the excision and the additivity properties,
1=drs(I —T,935,0)
=dps(I - T,95,0) + drs(I — T,95,0)
+dps(I = T,95\ (% U),0).

Therefore,
dLS(I - T7 Qg \ (ch) U Qg),O) = -1

This is for the proof of existence of three distinct solutions of (5).
If we choose u; be the minimal solution in [7, 7] and uz be the maximal
solution in [@, W], then the order of three solutions can be proved. 0O

The following theorem is another multiplicity of positive solutions
which can be applied to find 2N — 1 distinct ordered positive solutions
of the semilinear problem (Py) on the exterior domain.
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THEOREM 4. Assume that (C), (fo) and f(0) > 0. Suppose also that
there exist two pairs of G-lower and G-upper solutions {v, 0} and {w, W}
satisfying the following conditions:

(i) 9 <0, w<W, v <w, w7, and none of them are solutions of

(5);
(i) [o(t),w(t)] C I for all t € [0,1],
(iii) 5(3) > 0, (i) > 0 for i = 0,1, and
(iv) there is a small positive number § such that o(t), w(t) < 0 if

0<t<dand0<1-t<H.

Then (5) has at least 3 distinct solutions u; < ug < uz such that u; €
(0,9, ug € [w,w] and uy € [v, 9]\ ([7,7] U [0, D]).

Proof. We choose the positive function e which is the unique solution
of the problem: u” 4+ ¢q(t) = 0,0 < ¢ < 1 and u(0) = u(1) = 0. Then
we prove this theorem in the space C..(][0,1]). We note that the proof of
this theorem can be shown using the exact same technique in Theorem
3 if we get the following: If w € {v, 7] is a solution of (5), then w belongs
to the interior of §2; in the space C.[0,1].

First, we prove that w € C,([0,1]). To show that, we will find a
positive number ¢ so that w(t) < ce(t) for all ¢t € (0,1). It can be shown
from the following calculations: By L’Hospital rule,

lim elt) _ lim ¢

= 0
t—0w(t) t—0w(t) z

if w'(t) <ooast— 0. Let w'(t) — co ast — 0. Then

i e/(t) . (’.”(t) . 1
PR () T Fl)

Similarly, we have the following limit:

Thus, we get a positive constant ¢ so that w(t) < ce(t) for all ¢t € (0,1).
Since w(t) > 0 on some neighborhood of ¢ = 0 or ¢ = 1 in {0, 1], we can
easily find a negative constant d so that de(t) < w(t) for all t € (0, 1).
Consequently, w € C.([0, 1]).
Secondly, we show that w lies in the interior of 2. Hence, we prove
the existence of a positive number ¢; so that

ere(t) + o(t) < w(t)
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for all t € (0,1). Let

e wit) = v(t)
tel(r(l),1) e(t)

We will show v > 0.
Suppose that v = 0. Then for any € > 0, there is a point t. € (0,1)

such that
w(te) — v(te)

ety °
Then
(%) ee(te) + v(t:) —w(t) > 0.
We note that if either t =0 or ¢t =1, then

ee(t) + v(t) — w(t) < 0.

Now, if we calculate the followings:

[ee(t) + B( ()] — Slee(t) + v(t) — w(t)]
= e(e”(t) - 56’(t)) +3"(t) — w"(t) — 6((t) — w(?))
e(—q(t) — de(t)) — a(t) f(B(t)) + q(t) f(w(t)) — 6(v(t) — w(t))
e(—q(t) — de(t)) + q()[f(w(t)) — f(2(t))] — 3(0(t) — w(?))
> e(—q(t) — de(t)) + (6 — Mq(t))(w(t) — v(t)).

Without loss of generality, we assume that ¢, is a maximizer of ee(t) +
7(¢) — w(t) in [0,1]. Let ¢( = liminf, .o ¢.. Suppose that tg # 0, to # 1,
and tg is not a singular interior point of 7, i.e. tg # 7, it =1,--- ,nin
Definition 2. Then if we choose large § > 0 so that § — M¢(t) > 0 on
some neighborhood of #; in (0,1) and choose very small € > 0 so that

e(—q(t) — de(t)) + (6 — Mq())(w(t) — 0(t)) > 0

on the neighborhood. It is always possible from the result of Lemma 3.
If € > 0 is sufficiently small, then t. belongs to the neighborhood of g,
and then by Maximum Principle, it leads to a contradiction.
Suppose tg = 0. By L’Hospital rule,
tf — U tc - ! te
wit) = ot) _ vt

lim ————— =
om0 e(te) f1,1£n»0 e (te)

v
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if limy, g €'(t.) < oo, and

. w(t) g w'(t)
t%lin»o e'(t) f%lin%) e'(t.)
R Y )
Ty —q(t,)

if limy, g€'(t.) = oo. This leads to a contradiction to the fact v = 0.
Similarly, we can get a contradiction in the case tg = 1.
Suppose that t; is a singular interior point of ¥. (%) implies that
0(tg) = w(ty). This is impossible from Lemma 3.
From condition (iii), we also can easily show the existence of a positive
number ¢ so that
w(t) < v(t) — exe(t)

for all t € (0,1). Therefore,
ere(t) + 0(t) < w(t) < v(t) — eze(t)

for all t € (0,1), and this implies that w € QF. O

4. Applications

Throughout this section, we assume that f(0) > 0. As an application
of Theorem 4, we prove the existence of 2N — 1 distinct ordered positive
solutions of the following problems ;

(1x)

v+ Ag(t)f(u)=0, 0<t<]l,
u(0) = 0 = u(1),

where A > 0 is a real parameter, ¢ € C((0,1),R") is singular at t = 0
and/or 1.

THEOREM 5. ([11]) For a,b € R with a < b, consider

(u) =0, a<t<b,
(9x)
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Assume that § € C*([a,b],[0,00)) does not vanish identically on some
subinterval of [a,b] and f satisfies (fy) ~ (f3). Then there exists A, > 0
such that for all A > )\,, problem (9)) has 2N — 1 distinct positive
ordered solutions u;, u;1 and uiyy (i =1,--- ,N — 1) such that

ui(t) < Uiyl (t) < uita(t)

for all t € [a,b]. Moreover, for j =1,--- ,N, u;(t) < a; for all t € [a,b],
and u; converges to a; as A — oo uniformly on every compact subset of

(a,b).

Now we have a similar result for singular problem (1).

THEOREM 6. Assume that g € C'((0,1),(0,00)) satisfies (C) and f
satisfies (fo) ~ (fs). Then there exists A, > 0 such that for all A > A,
the singular boundary value problem (1)) has 2N — 1 distinct positive
ordered solutions u;, Uiy s and u;1; (i=1,--+- ,N — 1) such that

ui(t) S uppp(t) < uia(t)

for all t € [0,1].

Proof. We prove this theorem by constructing N many G-lower solu-
tions of (1,). Choose a closed bounded interval [a,b] C (0,1) with a < b.
Then by Theorem 5, there is A\g > 0 such that for all A > X,, problem
(9») has N distinct positive ordered solutions vy, -+ ,vn such that

v1(t) <wvat) <--- <wpn(t) forallt € a,b

and v;(t) < a; for all t € [0,1] and v; converges to a; as A — oo
uniformly on every compact subset of (a,b). Let

- vi(t), a<t<b,

w(t) = 0 otherwise

for j = 1,--- ,N. Then #; is a G-lower solution and a; is a G-upper
solution of (1)), respectively. Thus for each j =1,--- ,N — 1, we have
two pairs of G-lower and G-upper solutions {%;,a;} and {@;4+1,a;41}
with @;41 & aj, none of them are solutions of (1,). Since those pairs
satisfies all the conditions of Theorem 4, we obtain three solutions u;,
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Uj; 1, Uj41 for each 7 such that u; € [4j,a;], ujt1 € [Gj+1,Q54+1], Uiy €

(@7, a501] \ (35, a5] U 811, @41]), and
ui(t) < ujp1(t) < uiga(t)
for all ¢t € [0,1]. This completes the proof. O

As an application of Theorem 6, we show the existence of 2N — 1
distinct ordered positive radial solutions of problem (Py).

THEOREM 7. Assume that g satisfies (g) and f satisfies (fg) ~ (f3).
Then there exists A\, > 0 such that for all A > A,, (105) has 2N — 1
distinct ordered positive radial solutions.

REMARK 2. The above problem is either regular or singular depend-
ing on the coefficient function g. Necessary and sufficient condition in
order that g satisfies the integral condition in (g) is that ¢ fulfills the
condition (C). We also note that g satisfies the integral condition in (g)
if f{’zl>r0}g(|xl)[$[2‘"da: < oo. Furthermore, if we let h(z) = g(|z]) in
the exterior of the ball B(0,r,), we get the following statement: if for
some p with 1 < p < &, h € L? on the exterior domain, then g satisfies
the condition (g).
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