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Abstract. In the note, by virtue of Abel’s theorem and Abel’s limit theorem in the
theory of power series, the author provides three proofs for a sum of an alternating
series involving central binomial numbers.

1. An Alternation Series involving Central Binomial Numbers

On 29 June 2021, Vuk Stojiljkovic (University of Novi Sad, Serbia) asked on the

ResearchGate of the alternating series
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.

In this note, we give an answer to the sum of the alternating series (1).

Theorem 1. The sum

(2)

∞∑
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k

1
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)
= 2 ln

[
2
(√
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is valid.

We will provide three proofs of Theorem 1 in next section.

2. Three Proofs for the Sum of an Alternation Series

In this section, we provide three proofs for the sum in (2).

Received by the editors July 06, 2021. Accepted August 23, 2021.
2020 Mathematics Subject Classification. Primary 41A58; Secondary 11B65, 26A09.
Key words and phrases. Abel’s theorem, Abel’s limit theorem, sum, alternating series, central

binomial number, arcsine, series expansion, binomial expansion, proof.
∗Corresponding author.

c⃝ 2022 Korean Soc. Math. Educ.

31



32 Yue-Wu Li & Feng Qi

First Proof. It is common knowledge [1, p. 81, 4.4.40] that the arcsine function

arcsin z has the series expansion
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, |z| < 1.

This series expansion can be reformulated [4, p. 58, (1.1)] as
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Differentiating with respect to z, we obtain
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Let
(
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= −w, that is, z2 = −4w. Then
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We can rewrite this series expansion in the form
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Integrating on both sides with respect to w ∈ (0, x] ⊆
(
0, 14

)
, we acquire∫ x
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for 0 < x < 1
4 . Accordingly, by Abel’s theorem [2, p. 234, Theorem 9.20], it follows
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for |x| < 1
4 . By virtue of Abel’s limit theorem in [2, p. 245, Theorem 9.31], taking

x = 1
4 , we arrive at
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In conclusion, we obtain the sum (2). The first proof is complete. �

Second Proof. It is easy to see that
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for 0 < |x| < 1
4 , where we used the series expansion (3). Integrating in x ∈ (0, t] ⊆(
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)
on both sides, we find∫ t
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As a result, we acquire
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Consequently, we conclude the sum (2). The second proof is complete. �

Third Proof. It is well known [3, p. 108, 4.6.7] that the binomial expansion is
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This series expansion is equivalent to the series expansion (4). The rest of this proof

is same as texts after the series expansion (4) in the first proof. The third proof is

thus complete. �
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