• Title/Summary/Keyword: product manifold

Search Result 137, Processing Time 0.021 seconds

REGULAR GENUS AND PRODUCTS OF SPHERES

  • Spaggiari, Fulvia
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.925-934
    • /
    • 2010
  • A crystallization of a closed connected PL manifold M is a special edge-colored graph representing M via a contracted triangulation. The regular genus of M is the minimum genus of a closed connected surface into which a crystallization of M regularly embeds. We disprove a conjecture on the regular genus of $\mathbb{S}\;{\times}\;\mathbb{S}^n$, $n\;{\geq}\;3$, stated in [J. Korean Math. Soc. 41 (2004), no. 3, p. 420].

HARMONIC AND BIHARMONIC MAPS ON DOUBLY TWISTED PRODUCT MANIFOLDS

  • Boulal, Abdelhamid;Djaa, Mustapha;Ouakkas, Seddik
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.273-291
    • /
    • 2018
  • In this paper we investigate the geometry of doubly twisted product manifolds and we study the harmonicity and biharmonicity of maps between doubly twisted product Riemannian manifold. Also we characterize the conformal biharmonic maps and construct some new proper biharmonic maps.

THE SYMMETRY OF spin DIRAC SPECTRUMS ON RIEMANNIAN PRODUCT MANIFOLDS

  • HONG, KYUSIK;SUNG, CHANYOUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1037-1049
    • /
    • 2015
  • It is well-known that the spectrum of a $spin^{\mathbb{C}}$ Dirac operator on a closed Riemannian $spin^{\mathbb{C}}$ manifold $M^{2k}$ of dimension 2k for $k{\in}{\mathbb{N}}$ is symmetric. In this article, we prove that over an odd-dimensional Riemannian product $M^{2p}_1{\times}M^{2q+1}_2$ with a product $spin^{\mathbb{C}}$ structure for $p{\geq}1$, $q{\geq}0$, the spectrum of a $spin^{\mathbb{C}}$ Dirac operator given by a product connection is symmetric if and only if either the $spin^{\mathbb{C}}$ Dirac spectrum of $M^{2q+1}_2$ is symmetric or $(e^{{\frac{1}{2}}c_1(L_1)}{\hat{A}}(M_1))[M_1]=0$, where $L_1$ is the associated line bundle for the given $spin^{\mathbb{C}}$ structure of $M_1$.

T-STRUCTURE AND THE YAMABE INVARIANT

  • Sung, Chan-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.435-443
    • /
    • 2012
  • The Yamabe invariant is a topological invariant of a smooth closed manifold, which contains information about possible scalar curvature on it. It is well-known that a product manifold $T^m{\times}B$ where $T^m$ is the m-dimensional torus, and B is a closed spin manifold with nonzero $\^{A}$-genus has zero Yamabe invariant. We generalize this to various T-structured manifolds, for example $T^m$-bundles over such B whose transition functions take values in Sp(m, $\mathbb{Z}$) (or Sp(m - 1, $\mathbb{Z}$) ${\oplus}\;{{\pm}1}$ for odd m).

THE EXISTENCE OF WARPING FUNCTIONS ON RIEMANNIAN WARPED PRODUCT MANIFOLDS

  • Jung, Yoon-Tae;Kim, Seul-Ki;Lee, Ga-Young;Lee, Soo-Young;Choi, Eun-Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.525-532
    • /
    • 2013
  • In this paper, when N is a compact Riemannian manifold of class (A), we consider the existence of some warping functions on Riemannian warped product manifolds $M=[a,{\infty}){\times}_fN$ with prescribed scalar curvatures.

PROJECTIVELY FLAT WARPED PRODUCT RIEMANNIAN MANIFOLDS

  • Oh, Won-Tae;Shin, Seung-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.1039-1044
    • /
    • 2000
  • We investigate the projectively flat warped product manifolds and study the geometric structure of the base space and its fibre. Specifically we find the conditions that the scalar curvature of the base space (B,g) vanishes if and only if f is harmonic on (B,g) and the fibre (F,$\bar{g}$) is a space of constant curvature.

TENSOR PRODUCT SURFACES WITH POINTWISE 1-TYPE GAUSS MAP

  • Arslan, Kadri;Bulca, Betul;Kilic, Bengu;Kim, Young-Ho;Murathan, Cengizhan;Ozturk, Gunay
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.601-609
    • /
    • 2011
  • Tensor product immersions of a given Riemannian manifold was initiated by B.-Y. Chen. In the present article we study the tensor product surfaces of two Euclidean plane curves. We show that a tensor product surface M of a plane circle $c_1$ centered at origin with an Euclidean planar curve $c_2$ has harmonic Gauss map if and only if M is a part of a plane. Further, we give necessary and sufficient conditions for a tensor product surface M of a plane circle $c_1$ centered at origin with an Euclidean planar curve $c_2$ to have pointwise 1-type Gauss map.