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REGULAR GENUS AND PRODUCTS OF SPHERES

Fulvia Spaggiari

Abstract. A crystallization of a closed connected PL manifold M is a
special edge-colored graph representing M via a contracted triangulation.
The regular genus of M is the minimum genus of a closed connected
surface into which a crystallization of M regularly embeds. We disprove
a conjecture on the regular genus of S2 × Sn, n ≥ 3, stated in [J. Korean
Math. Soc. 41 (2004), no. 3, p. 420].

1. Introduction

Throughout the paper we shall work in the piecewise linear (PL) category.
For basic definitions and results on PL topology see, for example, [14] and
[17]. An (n + 1)-colored graph is a pair (G, c), where G = (V (G), E(G)) is a
connected multigraph (without loops) regular of degree n + 1, and c : E(G) →
∆n = {0, 1, . . . , n} is an edge-coloring such that c(e) 6= c(f) for any pair e,
f of adjacent edges of G. The set ∆n will be called the color set and its
elements the colors. Colored graphs represent a useful combinatorial approach
to the topology of piecewise linear (PL) manifolds. For more details see for
example the survey papers [1], [5], [7], [10], and [18]. An n-pseudocomplex
K(G) can be associated to (G, c) by the following rules. We consider an n-
simplex σn(v) for each vertex v of G and label its vertices by ∆n. If two
vertices v and w are joined in G by an i-colored edge, then we identify the
(n− 1)-faces of the simplexes σn(v) and σn(w) opposite to the vertex labelled
by i, so that equally labelled vertices are identified. For each B ⊂ ∆n, the set
GB = (V (G), c−1(B)) is a partial subgraph of G and its connected components
are called the B-residues of G. If B = {i, j} ⊂ ∆n, let gij denote the number
of B-residues in G. For each color i ∈ ∆n, we set î = ∆n \ {i}. Then (G, c) is
said to be contracted if Gbi is connected for every i ∈ ∆n. An (n + 1)-colored
graph (G, c) is said to be a crystallization of a closed connected PL n-manifold
M if (G, c) is contracted and the polyhedron |K(G)|, underlying K(G), is (PL)
homeomorphic to M . We say that K(G) is a contracted triangulation of M
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and that G represents M . It is well known that any closed connected PL n-
manifold admits a crystallization (see [15] and [16]). Any two colored-graphs
(in particular crystallizations) which represent the same manifold are related by
a finite sequence of certain elementary moves, called cancelling and/or adding
dipoles (see [9]). A subgraph Θ of G formed by two vertices x and y, joined
by h edges, 1 ≤ h ≤ n, labelled by colors i1, i2, . . . , ih, is called a dipole of type
h if x and y belong to different connected components of the partial subgraph
G∆n\{i1,i2,...,ih}. Cancelling Θ means the following two steps: (1) delete x and
y together with the h edges joining them; (2) paste the pairs of dangling edges
of the same color. Adding Θ means the inverse process. A 2-cell embedding
f : |G| → F of an (n + 1)-colored graph into a closed connected surface F is
called regular if there exists a cyclic permutation ε = (ε0, ε1, . . . , εn) of ∆n such
that each region of f is bounded by a cycle with edges alternatively colored by
εi, εi+1 (indices mod n + 1). The Euler characteristic of F (see [11]) is

χ(F ) =
∑

i∈Zn+1

gεiεi+1 +
(1− n)

2
p,

where gεiεi+1 is the number of {εi, εi+1}-residues of G and p is the number of
vertices of G (i.e., the order of G). The surface F is orientable if and only if
G is bipartite. The regular genus g(G) of G is the minimum genus of a closed
connected surface into which G regularly embeds. The regular genus g(M) of
a closed connected PL n-manifold M was defined in [12] as the integer

g(M) = min{g(G) : (G, c) is a crystallization of M}.

This topological invariant extends to dimension n the classical notions of genus
of a closed surface and of Heegaard genus of a closed 3-manifold. It is known
that the n-sphere Sn is the unique closed connected PL n-manifold of regular
genus zero. There are a lot of results on the computation of the regular genus
for closed PL manifolds (see, for example, the survey papers quoted above, and
their references). Here we are interested in the case of products of spheres. The
following facts are known:

• The product S1×Sn, n ≥ 3, is the unique closed connected PL (n+1)-
manifold of regular genus one ([3], [6]).

• The regular genus of S2 × S2 (resp. S2 × S3) is four (resp. eight) ([2],
[4]).

• For each n ≥ 3, g(S2 × Sn) ≤ n2 − 1 ([8]).

The following conjecture was stated in [8], p. 420.

Conjecture. For each n ≥ 3, g(S2 × Sn) = n2 − 1.

This is true for n = 3. In this paper we show that the conjecture is false for
n = 4 and n = 5. In fact, we have:



REGULAR GENUS AND PRODUCTS OF SPHERES 927

Theorem. There are crystallizations of S4 × S2 and S5 × S2 which regularly
embed into closed connected orientable surfaces of genus 13 and 19, respectively,
so g(S4 × S2) ≤ 13 and g(S5 × S2) ≤ 19.

2. Representing products of spheres by colored graphs

A recursive algorithm for constructing noncontracted colored graphs repre-
senting products of spheres was given in [8]. Such a construction is the first step
we use to obtain contracted colored graphs (i.e., crystallizations) representing
S4×S2 and S5×S2. To make the reading of the paper self-contained, we briefly
recall the algorithm described in [8]. It is based on the standard (p+1)-colored
graph G(p) with two vertices joined by p + 1 differently colored edges, which
represents the p-sphere Sp. An (m + n + 1)-colored graph G(m,n) with 4( m+n

n )
vertices, representing the topological product Sm × Sn, can be constructed in
the following way:

1) The vertex set is denoted by

V (G(m,n)) = V (G(m−1,n)) ∪ V (G(m,n−1)),

where

V (G(m−1,n)) = {δi

j(k) : i, j = 1, 2, k = 1, . . . , ( m+n−1
n )}

and

V (G(m,n−1)) = {δi

j(k) : i, j = 1, 2, k = 1, . . . , ( m+n−1
m )};

2) For each k = 1, . . . , ( m+n−1
n ), join δ

1

1(k) with δ
2

1(k) and δ
2

2(k) with
δ
1

2(k) by an (m + n)-colored edge (the color set is ∆m+n);

3) For each k = 1, . . . , ( m+n−1
m ), join δ

1

1(k) with δ
1

2(k) and δ
2

2(k) with

δ
2

1(k) by an (m + n)-colored edge;
4) For each k = ( m+n−2

n ) + 1, . . . , ( m+n−2
n ) + ( m+n−2

n−1 ), join δ
i

j(k) and

δ
i

j(k − ( m+n−2
n )), i, j = 1, 2, by an (m + n− 1)-colored edge;

5) For the remaining vertices of G(m,n) re-establish the edges connecting
them as they are in G(m−1,n) and G(m,n−1).

By this construction, starting from the (p + 2)-colored graphs G(1,p) and
G(p,1), p > 0, it is possible to construct the (m + n + 1)-colored graph G(m,n)

for each m,n > 0. A picture of the graphs G(1,n), n > 0, is shown in [8,
Figure 3]. As remarked in [8], the graph G(m,n) has a double symmetry: each

edge connecting the vertices δ
1

1(k) and δ
2

1(k) (resp. δ
1

1(k) with δ
1

2(k)) has a
corresponding edge, with the same color, connecting the vertices δ

2

2(k) and

δ
1

2(k) (resp. δ
2

2(k) with δ
2

1(k)) for each k = 1, . . . , ( m+n
n ).

In the next sections we consider the noncontracted colored graphs G(4,2) and
G(5,2) representing S4 × S2 and S5 × S2, respectively. Cancelling successively
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many dipoles of types 1 and 2 on them, we obtain contracted colored graphs
(that is, crystallizations) representing the same manifolds. Then we compute
the genera of closed orientable surfaces into which such crystallizations regu-
larly embed. This allows us to obtain new upper bounds for the regular genera
of the above manifolds. Our bounds are stronger than those given in [8] for
such products of spheres, and disprove the conjecture stated in that paper.

Figure 1. The 7-colored graph G(4,2) representing S4 × S2
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Figure 2. The crystallization G̃(4,2) of S4 × S2

3. A crystallization of S4 × S2

We apply the above construction in order to obtain a 7-colored graph G(4,2)

with 60 vertices representing the manifold S4 × S2 (see Figure 1). To sim-
plify the notation, the vertices δ

i

j(k), i, j = 1, 2, k = 1, . . . , ( 5
2 ) = 10, are

denoted in the following way: δ
1

1(1) = 1a, δ
2

1(1) = 1b, δ
1

2(1) = 1c, δ
2

2(1) = 1d,
δ
1

1(2) = 2a, δ
2

1(2) = 2b, δ
1

2(2) = 2c, δ
2

2(2) = 2d, . . . , δ
1

1(10) = 10a, δ
2

1(10) =
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Figure 3. A part of the 8-colored graph G(5,2) representing
S5 × S2

10b, δ
1

2(10) = 10c, δ
2

2(10) = 10d; while the vertices δ
i

j(k), i, j = 1, 2, k =

1, . . . , ( 5
4 ) = 5, are denoted as follows: δ

1

1(1) = 11a, δ
2

1(1) = 11b, δ
1

2(2) = 11c,

δ
2

2(1) = 11d, . . . , δ
1

1(5) = 15a, δ
2

1(5) = 15b, δ
1

2(5) = 15c, δ
2

2(5) = 15d. Then,
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Figure 4. The crystallization G̃(5,2) of S5 × S2

according to steps (2) and (3) of the construction in Section 2, we join in
pairs the vertices 1a and 1b (resp. 1c and 1d), . . . , 10a and 10b (resp. 10c
and 10d), and the vertices 11a and 11c (resp. 11b and 11d), . . . , 15a and 15c
(resp. 15b and 15d) by 6-colored edges. Finally, applying step (4), we join in
pairs the vertices 7a and 11a (resp. 7b, 7c, 7d with 11b, 11c, 11d), . . . , 10a
and 14a (resp. 10b, 10c, 10d with 14b, 14c, 14d) by 5-colored edges. For the
remaining vertices of G(4,2) we consider the edges as they are in the graphs
G(3,2) and G(4,1), representing S3 × S2 and S4 × S1, respectively, according to
step (5). Now we simplify the graph G(4,2) by cancelling the dipole of type
1 formed by the vertices 15a and 14a joined by one edge labelled by color
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4, as these vertices belong to different connected components of Gb4. So we
delete 15a and 14a together with the edge joining them and paste the pairs
of dangling edges of the same color. At the same way we successively cancel
the dipole of type 1 formed by the vertices 9a and 13a, the dipole of type 1
formed by the vertices 11a and 12a, the dipole of type 1 formed by the vertices
13b and 14b, the dipole of type 1 formed by the vertices 3a and 5a, the dipole
of type 1 formed by the vertices 12b and 15b, the induced dipole of type 2
formed by the vertices 7a and 8a, the dipole of type 1 formed by the vertices
6b and 9b, the dipole of type 1 formed by the vertices 1a and 2a, the induced
dipole of type 2 formed by the vertices 7b and 11b, the induced dipole of type
2 formed by the vertices 5b and 8b, and the induced dipole of type 2 formed
by the vertices 4b and 6a. The resulting graph G̃(4,2) has 36 vertices and it
is contracted since G̃

(4,2)
bi is connected for every i ∈ ∆6 (see Figure 2). Thus

G̃(4,2) is a crystallization which represents S4 × S2. We can directly calculate
the numbers gij , i, j ∈ ∆6, of the 2-colored connected components of G̃(4,2):

g01 = 9 g02 = 9 g03 = 9 g04 = 9 g05 = 8 g06 = 9 g12 = 10
g13 = 8 g14 = 10 g15 = 9 g16 = 10 g23 = 8 g24 = 10 g25 = 9
g26 = 10 g34 = 8 g35 = 9 g36 = 8 g45 = 9 g46 = 10 g56 = 9 .

Let us consider the cyclic permutation ε = (ε0, ε1, . . . , εn) = (0, 1, 2, 4, 6, 5, 3)
of ∆6. Then

∑
i∈Z7

gεiεi+1 = 66, hence the graph G̃(4,2) regularly embeds into
the closed connected orientable surface F whose Euler characteristic is

χ(F ) =
∑

i∈Z7

gεiεi+1 +
(1− 6)

2
p = 66− 5

2
36 = −24.

Then the genus of F is g(F ) = (2− χ(F ))/2 = 13, hence g(S4 × S2) ≤ 13.

4. A crystallization of S5 × S2

Applying the construction described in Section 2 we can obtain a 8-colored
graph G(5,2) with 84 vertices representing the manifold S5×S2. According with
the notation in Section 3, the vertices δ

i

j(k), i, j = 1, 2, k = 1, . . . , ( 6
2 ) = 15, are

denoted in the following way: δ
1

1(1) = 1a, δ
2

1(1) = 1b, δ
1

2(1) = 1c, δ
2

2(1) = 1d,
δ
1

1(2) = 2a, δ
2

1(2) = 2b, δ
1

2(2) = 2c, δ
2

2(2) = 2d, . . . , δ
1

1(15) = 15a, δ
2

1(15) =

15b, δ
1

2(15) = 15c, δ
2

2(15) = 15d; while the vertices δ
i

j(k), i, j = 1, 2, k =

1, . . . , ( 6
5 ) = 6, are denoted as follows: δ

1

1(1) = 16a, δ
2

1(1) = 16b, δ
1

2(2) = 16c,

δ
2

2(1) = 16d, . . . , δ
1

1(6) = 21a, δ
2

1(6) = 21b, δ
1

2(6) = 21c, δ
2

2(6) = 21d. Then,
according to steps (2) and (3) of the construction in Section 2, we join in pairs
the vertices 1a and 1b (resp. 1c and 1d), . . . , 15a and 15b (resp. 15c and 15d),
and the vertices 16a and 16c (resp. 16b and 16d), . . . , 21a and 21c (resp. 21b
and 21d) by 7-colored edges. Finally, applying step (4), we join in pairs the
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vertices 11a and 16a (resp. 11b, 11c, 11d with 16b, 16c, 16d), . . . , 15a and 20a
(resp. 15b, 15c, 15d with 20b, 20c, 20d) by 6-colored edges. For the remaining
vertices of G(5,2) we consider the edges as they are in the graphs G(4,2) and
G(5,1), representing S4 × S2 and S5 × S1, respectively, according to step (5).
Since the graph G(5,2) has a double symmetry we can draw only a part of it
(see Figure 3). The whole graph can be obtained by reflecting twice the picture
in Figure 3. We simplify the graph G(5,2) by cancelling 10 dipoles of type 1
and 10 dipoles of type 2, obtaining a crystallization G̃(5,2) for S5 × S2 with 44
vertices (see Figure 4). A direct calculation gives gij = 12, for every i, j ∈ ∆7,
hence the graph G̃(5,2) regularly embeds into the closed connected orientable
surface F whose Euler characteristic is

χ(F ) =
∑

i∈Z8

gεiεi+1 +
(1− 7)

2
p = 96− 6

2
44 = −36

for any cyclic permutation ε = (ε0, ε1, . . . , εn) of ∆7. Then the genus of F is
g(F ) = (2− χ(F ))/2 = 19, hence g(S5 × S2) ≤ 19.
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[7] A. Cavicchioli, D. Repovš, and A. B. Skopenkov, Open problems on graphs arising from
geometric topology, Topology Appl. 84 (1998), no. 1-3, 207–226.

[8] P. Cristofori, On the genus of Sm×Sn, J. Korean Math. Soc. 41 (2004), no. 3, 407–421.
[9] M. Ferri and C. Gagliardi, Crystallisation moves, Pacific J. Math. 100 (1982), no. 1,

85–103.
[10] M. Ferri, C. Gagliardi, and L. Grasselli, A graph-theoretical representation of PL-

manifolds–a survey on crystallizations, Aequationes Math. 31 (1986), no. 2-3, 121–141.
[11] C. Gagliardi, Regular imbeddings of edge-coloured graphs, Geom. Dedicata 11 (1981),

no. 4, 397–414.
[12] , Extending the concept of genus to dimension n, Proc. Amer. Math. Soc. 81

(1981), no. 3, 473–481.



934 FULVIA SPAGGIARI

[13] C. Gagliardi and L. Grasselli, Representing products of polyhedra by products of edge-
colored graphs, J. Graph Theory 17 (1993), no. 5, 549–579.

[14] P. J. Hilton and S. Wylie, Homology Theory: An introduction to algebraic topology,
Cambridge University Press, New York 1960.
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