
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 28, No. 4, November 2015
http://dx.doi.org/10.14403/jcms.2015.28.4.591

THE EXISTENCE OF WARPING FUNCTIONS ON

RIEMANNIAN WARPED PRODUCT MANIFOLDS

WITH FIBER MANIFOLDS OF CLASS (A)

Yoon-Tae Jung*, Mi-Ra Yoon**, and Eun-Hee Choi***

Abstract. In this paper, we prove the existence and the nonex-
istence of warping functions on Riemannian warped product mani-
folds with some prescribed scalar curvatures according to the fiber
manifolds of class (A).

1. Introduction

One of the basic problems in the differential geometry is studying the
set of curvature functions which a given manifold possesses.

The well-known problem in differential geometry is that of whether
there exists a warping function of warped metric with some prescribed
scalar curvature function. One of the main methods of studying differ-
ential geometry is by the existence and the nonexistence of a warped
metric with prescribed scalar curvature functions on some Riemannian
warped product manifolds. In order to study these kinds of problems,
we need some analytic methods in differential geometry.

For Riemannian manifolds, warped products have been useful in pro-
ducing examples of spectral behavior, examples of manifolds of negative
curvature (cf. [2, 3, 4, 5, 7, 13, 14]), and also in studying L2−cohomology
(cf.[15]).

In a study [11, 12], M.C. Leung have studied the problem of scalar cur-
vature functions on Riemannian warped product manifolds and obtained
partial results about the existence and the nonexistence of Riemannian
warped metric with some prescribed scalar curvature function.
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In this paper, we also study the existence and the nonexistence of
a warped product metric with prescribed scalar curvature functions on
some Riemannian warped product manifolds. So, using upper solution
and lower solution methods, we consider the solution of some partial
differential equations on a warped product manifold. That is, we express
the scalar curvature of a warped product manifold M = B×fN in terms
of its warping function f and the scalar curvatures of B and N .

By the results of Kazdan and Warner ([8, 9, 10]), if N is a compact
Riemannian n−manifold without boundary, n ≥ 3, then N belongs to
one of the following three categories:

(A) A smooth function on N is the scalar curvature of some Riemann-
ian metric on N if and only if the function is negative somewhere.

(B) A Smooth function on N is the scalar curvature of some Riemann-
ian metric on N if and only if the function is either identically zero
or strictly negative somewhere.

(C) Any smooth function on N is the scalar curvature of some Rie-
mannian metric on N .

This completely answers the question of which smooth functions are
scalar curvatures of Riemannian metrics on a compact manifold N .

In [8, 9, 10], Kazdan and Warner also showed that there exists some
obstruction of a Riemannian metric with positive scalar curvature (or
zero scalar curvature) on a compact manifold.

For noncompact Riemannian manifolds, many important works have
been done on the question how to determine which smooth functions are
scalar curvatures of complete Riemannian metrics on an open manifold.
Results of Gromov and Lawson ([5]) show that some open manifolds
cannot carry complete Riemannian metrics of positive scalar curvature,
for example, weakly enlargeable manifolds.

Furthermore, they show that some open manifolds cannot even ad-
mit complete Riemannian metrics with scalar curvatures uniformly pos-
itive outside a compact set and with Ricci curvatures bounded ([5], [13]
p.322).

On the other hand, it is well known that each open manifold of di-
mension bigger than 2 admits a complete Riemannian metric of constant
negative scalar curvature ([2]). It follows from the results of Aviles and
McOwen ([1]) that any bounded negative function on an open mani-
fold of dimension bigger than 2 is the scalar curvature of a complete
Riemannian metric.

In this paper, when N is a compact Riemannian manifold, we discuss
the method of using warped products to construct Riemannian metrics
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on M = [a,∞)×fN with specific scalar curvatures, where a is a positive
constant. It is shown that if the fiber manifold N belongs to class
(A), then M admits a Riemannian metric with some prescribed scalar
curvature outside a compact set.

Although we will assume throughout this paper that all data (M ,
metric g, and curvature, etc.) are smooth, this is merely for convenience.
Our arguments go through with little or no change if one makes minimal
smoothness hypotheses, such as assuming that the give data is Hölder
continuous.

2. Main results

Let (N, g) be a Riemannian manifold of dimension n and let f :
[a,∞) → R+ be a smooth function, where a is a positive number. A
Riemannian warped product of N and [a,∞) with warping function f

is defined to be the product manifold ([a,∞)×f N, g
′
) with

(2.1) g
′

= dt2 + f2(t)g.

Let R(g) be the scalar curvature of (N, g). Then the scalar curvature

R(t, x) of g
′

is given by the equation

(2.2) R(t, x) =
1

f2(t)
[R(g)(x)− 2nf(t)f

′′
(t)− n(n− 1)|f ′(t)|

2
]

for t ∈ [a,∞) and x ∈ N (For details, [4] or [5]). Here we also know
that if R(g)(x) is constant, then R(t, x) is a function of only t− variable.

Now we consider the following problem:

Problem 2.1. Given a fiber N with constant scalar curvature c, can
we find a warping function f > 0 on B = [a,∞) such that for any
smooth function R(t, x) = R(t), the warped metric g admits R(t) as the
scalar curvature on M = [a,∞)×f N?

If we denote
u(t) = f

n+1
2 (t), t > a,

then equation (2.2) can be changed into

(2.3)
4n

n+ 1
u
′′
(t) +R(t, x)u(t)−R(g)(x)u(t)1−

4
n+1 = 0.

If N belongs to (A), then a negative constant function on N is the
scalar curvature of some Riemannian metric. So we can take a Riemann-

ian metric g1 on N with scalar curvature R(g1) = − 4n

n+ 1
k, where k is
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a positive constant. Then equation (2.3) becomes

(2.4)
4n

n+ 1
u
′′
(t) +

4n

n+ 1
ku(t)1−

4
n+1 +R(t, x)u(t) = 0.

In order to prove the nonexistence of some Riemannian warped prod-
uct metric with fiber manifolds of class (A), we have the following the-
orem whose proof is similar to that of Lemma 3.3 in [6].

Theorem 2.2. Let u(t) be a positive smooth function on [a,∞). If
u(t) satisfies

u′′(t)

u(t)
≤ C

t2

for some constant 2 > C > 0, then there exists t0 > a such that for all
t > t0

u(t) ≤ c0tε

for some positive constants c0 and 2 > ε > 1.

Proof. Since 2 > C > 0, we can choose 2 > ε > 1 such that ε(ε−1) =
C. Then from the hypothesis, we have

tεu′′(t) ≤ ε(ε− 1)tε−2u(t).

Upon integration from t1(≥ a) to t(> t1 ≥ a), and using integration
by parts, we obtain

tεu′(t)− εtε−1u(t)− tε1u′(t1) + εtε−11 u(t1) + ε(ε− 1)

∫ t

t1

sε−2u(s)ds

≤ C
∫ t

t1

sε−2u(s)ds.

Therefore we have

(2.5) tεu′(t)− εtε−1u(t) ≤ tε1u′(t1)− εtε−11 u(t1).

We consider two following cases:

[Case 1] There exists t1 ≥ a such that u′(t1) ≤ 0.
If there is a number t1 ≥ a such that u′(t1) ≤ 0, then we have

tεu′(t)− εtε−1u(t) ≤ 0.

This gives
(lnu(t))′ ≤ ε(lnt)′.

Hence
u(t) ≤ c1tε

for all t > t1, where c1 is a positive constant.
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[Case 2] There does not exist t1 ≥ a such that u′(t1) ≤ 0.
In other words, if u′(t) > 0 for all t ≥ a, then u(t) ≥ c′ for some

positive constant c′. Let c2 be a positive constant such that

tε1u
′(t1)− εtε−11 u(t1) ≤ c2,

then equation (2.5) gives

tεu′(t)− εtε−1u(t) ≤ c2
for all t > t1. Thus

u′(t)

u(t)
≤ ε

t
+

c2
u(t)tε

≤ ε

t
+

c2
c′tε

.

Integrating from t1 to t we have

ln
u(t)

u(t1)
≤ εln

(
t

t1

)
+

c2

(ε− 1)c′tε−11

≤ εln
(
c3t

t1

)
,

as ε > 1. Here c3 is a positive constant such that lnc3 ≥ c2
ε(ε−1)c′tε−1

1

.

Hence we again obtain the inequality

u(t) ≤ btε

for some positive constant b and for all t ≥ t1.
Thus from two cases we always find t0 > a and a constant c0 > 0

such that

u(t) ≤ c0tε

for all t ≥ t0.

Using the above theorem, we can prove the following theorem about
the nonexistence of warping function, whose proof is similar to that of
Lemma 3.3 in [12].

Theorem 2.3. Suppose that N belongs to class (A). Let g be a
Riemannian metric on N of dimension n(≥ 3). We may assume that

R(g) = − 4n

n+ 1
k, where k is a positive constant. On M = [a,∞)×f N ,

there does not exist a Riemannian warped product metric

g
′

= dt2 + f2(t)g

with scalar curvature

R(t) ≥ −n(n− 1)

t2

for all x ∈ N and t > t0 > a, where t0 and a are positive constants.
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Proof. Assume that we can find a warped product metric on M =
[a,∞)×f N with

R(t) ≥ −n(n− 1)

t2

for all x ∈ N and t > t0 > a. In equation (2.4), we have

(2.6)
4n

n+ 1

[
u
′′
(t)

u(t)
+

k

u(t)
4

n+1

]
= −R(t) ≤ n(n− 1)

t2

and

(2.7)
u
′′
(t)

u(t)
≤

(n−1)(n+1)
4

t2
.

In equation (2.7), we can apply Theorem 2.2 and take ε = n+1
2 . Hence

we have t0 > a such that

u(t) ≤ c0t
n+1
2

for some positive constants c0 and all t > t0.

Then

k

u(t)
4

n+1

≥ c
′

t2

where 0 < c
′ ≤ k

c
4

n+1
0

is a positive constant. Hence equation (2.6) gives

u
′′
(t)

u(t)
≤ (n+ 1)(n− 1)− δ

4t2
,

where 4c
′ ≥ δ ≥ 0 is a constant. We can choose δ

′
> 0 such that

(n+ 1)(n− 1)− δ
4

=

(
n+ 1

2
− δ′

)(
n− 1

2
− δ′

)
for small positive δ. Applying Theorem 2.2 again, we have t1 > a such
that

u(t) ≤ c1t
n+1
2
−δ′

for some c1 > 0 and all t > t1. And

(2.8)
k

u(t)
4

n+1

≥ c
′′

t2−ε
,
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where ε =
4

n+ 1
δ
′

and 0 < c
′′ ≤ k

c
4

n+1

1

. Thus equation (2.7) and (2.8)

give
u
′′
(t)

u(t)
≤ (n− 1)(n+ 1)

4t2
− c

′′

t2−ε
,

which implies that

u
′′
(t) ≤ 0

for t large. Hence u(t) ≤ c2t for some constant c2 > 0 and large t. From
equation (2.5) we have

u
′′
(t)

u(t)
≤ −c3
t

4
n+1

+
(n+ 1)(n− 1)

4t2
≤ −c3

t

for t large enough, as n ≥ 3. Here c3 is a positive constant. Multiplying
u(t) and integrating from t

′
to t, we have

u
′
(t)− u′(t′) ≤ −c3

∫ t

t′

u(s)

s
ds, t > t

′
.

We consider two following cases :

[Case 1] There exists t
′ ≥ max{t0, t1} such that u

′
(t
′
) ≤ 0. If u

′
(t
′
) ≤

0 for some t
′
, then u

′
(t) ≤ −c4 for some positive constant c4. Hence

u(t) ≤ 0 for t large enough, contradicting the fact that u is positive.

[Case 2] There does not exist t
′ ≥ max{t0, t1} such that u

′
(t
′
) ≤ 0.

In order words, if u
′
(t) > 0 for all t large, then u(t) is increasing, hence∫ t

t′

u(s)

s
ds ≥ u(t

′
)

∫ t

t′

1

s
ds→∞.

Thus u
′
(t) has to be negative for some t large, which is a contradiction

to the hypothesis. Therefore there does not exist such warped product
metric.

In particular, Theorem 2.3 implies that if R(g) = − 4n
n+1k, then us-

ing Lorentzian warped product it is impossible to obtain a Riemannian
metric of positive or zero scalar curvature outside a compact subset.

Proposition 2.4. Suppose thatR(g) = − 4n

n+ 1
k andR(t, x) = R(t) ∈

C∞([a,∞)). Assume that for t > t0, there exist an upper solution u+(t)
and a lower solution u−(t) such that 0 < u−(t) ≤ u+(t). Then there
exists a solution u(t) of equation (2.4) such that for t > t0, 0 < u−(t) ≤
u(t) ≤ u+(t).
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Proof. We have only to show that there exist an upper solution ũ+(t)
and a lower solution ũ−(t) such that for all t ∈ [a,∞), ũ−(t) ≤ ũ+(t).
Since R(t) ∈ C∞([a,∞)), there exists a positive constant b such that

|R(t)| ≤ 4n

n+ 1
b2 for t ∈ [a, t0]. Since

4n

n+ 1
u′′+(t) +R(t)u+(t) +

4n

n+ 1
ku+(t)1−

4
n+1

≤ 4n

n+ 1
(u′′+(t) + b2u+(t) + ku+(t)1−

4
n+1 ),

if we divide the given interval [a, t0] into small intervals {Ii}ni=1, then for
each interval Ii we have an upper solution ui+(t) by parallel transporting

cosBt such that 0 <
1√
2
≤ ui+(t) ≤ 1. That is to say, for each interval

Ii,

4n

n+ 1
u′′i+(t) +R(t)ui+(t) +

4n

n+ 1
kui+(t)1−

4
n+1

≤ 4n

n+ 1
(u′′i+(t) + b2ui+(t) + kui+(t)1−

4
n+1 )

=
4n

n+ 1
(−B2 cosBt+ b2 cosBt+ k(cosBt)1−

4
n+1 )

=
4n

n+ 1
cosBt(−B2 + b2 + k(cosBt)−

4
n+1 )

≤ 4n

n+ 1
cosBt(−B2 + b2 + k2

2
n+1 )

≤ 0

for large B, which means that ui+(t) is an (weak) upper solution for
each interval Ii. Then put ũ+(t) = ui+(t) for t ∈ Ii and ũ+(t) = u+(t)

for t > t0, which is our desired (weak) upper solution such that
1√
2
≤

ũ+(t) ≤ 1 for all t ∈ [a, t0]. Put ũ−(t) =
1√
2
e−αt for t ∈ [a, t0] and some

large positive α, which will be determined later, and ũ−(t) = u−(t) for
t > t0. Then, for t ∈ [a, t0],

4n

n+ 1
u′′i−(t) +R(t)ui−(t) +

4n

n+ 1
kui−(t)1−

4
n+1

≥ 4n

n+ 1
(u′′i−(t)− b2ui−(t))

=
4n

n+ 1

1√
2
e−αt(α2 − b2) ≥ 0
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for large α. Thus ũ−(t) is our desired (weak) lower solution such that
for all t ∈ [a,∞), 0 < ũ−(t) ≤ ũ+(t).

However, in this paper, when N is a compact Riemannian manifold
of class (A), we consider the existence of some warping functions on
Riemannian warped product manifolds M = [a,∞)×fN with prescribed
scalar curvatures. If R(t, x) is also the function of only t-variable, then
we have the following theorems.

Theorem 2.5. Suppose thatR(g) = − 4n

n+ 1
k. Assume thatR(t, x) =

R(t) ∈ C∞([a,∞)) is a negative function such that

− 4n

n+ 1
bet

s ≤ R(t) ≤ − 4n

n+ 1

C

tα
, for t ≥ t0,

where t0 > a, 0 < α < 2, C and b, s > 1 are positive constants. Then
equation (2.4) has a positive solution on [a,∞).

Proof. We let u+(t) = tm, where m is some positive number. Then
we have

4n

n+ 1
u′′+(t) +

4n

n+ 1
ku+(t)1−

4
n+1 +R(t)u+(t)

≤ 4n

n+ 1
u′′+(t) +

4n

n+ 1
ku+(t)1−

4
n+1 − 4n

n+ 1

C

tα
u+(t)

=
4n

n+ 1
tm[

m(m− 1)

t2
+

k

t
4

n+1
m
− C

tα
]

≤ 0, t ≥ t0,

for some large t0, which is possible for large fixed m since 0 < α < 2.

Hence, u+(t) is an upper solution. Now put u−(t) = e−t
β
, where β is a

positive constant, which will be determined later. Then

4n

n+ 1
u′′−(t) +

4n

n+ 1
ku−(t)1−

4
n+1 +R(t)u−(t)

≥ 4n

n+ 1
u′′−(t) +

4n

n+ 1
ku−(t)1−

4
n+1 − 4n

n+ 1
bet

s
u−(t)

=
4n

n+ 1
e−t

β
[β2t2β−2 − β(β − 1)tβ−2 + ket

β 4
n+1 − bets ]

≥ 0, t ≥ t0
for some large t0 and large β such that β > s, which means that u−(t)
is a lower solution. And we can take β so large that 0 < u−(t) < u+(t).
So by Theroem 2.4, we obtain a positive solution.
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The above theorem implies that if R(t) is not rapidly decreasing and
less than some negative function, then equation (2.4) has a positive
solution.

Theorem 2.6. Suppose thatR(g) = − 4n

n+ 1
k. Assume thatR(t, x) =

R(t) ∈ C∞([a,∞)) is a negative function such that

− 4n

n+ 1
bet

s ≤ R(t) ≤ −C
t2
, for t ≥ t0

where t0 > a, b and C, s > 1 are positive constants. If C > n(n − 1),
then equation (2.3) has a positive solution on [a,∞).

Proof. In case that C > n(n − 1), we may take u+(t) = C+t
n+1
2 ,

where C+ is a positive constant. Then

4n

n+ 1
u′′+(t) +

4n

n+ 1
ku+(t)1−

4
n+1 +R(t)u+(t)

≤ C+
4n

n+ 1
t
n−3
2 [

n2 − 1

4
+ kC

− 4
n+1

+ − n+ 1

4n
C]

≤ 0,

which is possible if we take C+ to be large enough since
(n+ 1)(n− 1)

4
−

n+ 1

4n
C < 0. Thus u+(t) is an upper solution. And we take u−(t) as in

Theorem 2.4. In this case, we also obtain a positive solution.

Remark 2.7. The results in Theorem 2.5, and Theorem 2.6 are al-

most sharp as we can get as close to −n(n− 1)

t2
as possible. For example,

let R(g) = − 4n

n+ 1
k and f(t) = t ln t for t > a. Then we have

R = − 1

t2
[

4n

n+ 1

k

(ln t)2
+

2n

ln t
+ n(n− 1)(1 +

1

ln t
)2],

which converges to −n(n− 1)

t2
as t goes to ∞.
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