• Title/Summary/Keyword: prior probability

Search Result 287, Processing Time 0.021 seconds

A Comparison of Confidence Intervals for the Difference of Proportions (모비율 차이의 신뢰구간들에 대한 비교연구)

  • 정형철;전명식;김대학
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.377-393
    • /
    • 2003
  • Several confidence interval estimates for the difference of two binomial proportions were introduced. Bootstrap confidence interval is also suggested. We examined the over estimation property of approximate intervals and under estimation trend of exact intervals for the difference of proportions. We compared these confidence intervals based on the average coverage probability, expected width and skewness measure. Particularly actual coverage probability were calculated by using the prior distribution of parameters. Monte Carlo simulation for small sample size is conducted. Some interesting contour plots of average coverage probability and marginal plots for several interval estimates are presented.

Probabilistic Applications for Estimating and Managing Project Contingency (확률이론을 이용한 프로젝트 예비비 산정 및 관리)

  • Lee Man-Hee;Yoo Wi-Sung;Lee Hak-ki
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.224-227
    • /
    • 2004
  • As a project progresses, it is well known that construction manager has to define the contingency for the expected project cost, which is used as a buffer for uncertainty. In this study, we mention uncertainty as the amount of likelihood that is difficult or impossible to predict project cost. From the completed work package, we obtain the true cost value, and this information is technically good data for estimating the realistic contingency of work packages to be accomplished. Based upon this historical information, construction manager recomputes the contingency for the remaining works. Conditional probability theory is often useful for re-estimating one of the remaining project progress as the true cost of the completed works can be different from the planned cost. As a project is progressing, true value is really important to predict the realistic project budget and to decrease the uncertainty. In this study, we gave applied conditional probability theory to estimating project contingency supposing a project that consists of fire work packages, provide the fundamental framework for setting and controlling project contingency.

  • PDF

A Bayesian Criterion for a Multiple test of Two Multivariate Normal Populations

  • Kim Hea-Jung;Son Young Sook
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.147-152
    • /
    • 2000
  • A Bayesian criterion is proposed for a multiple test of two independent multivariate normal populations. For a Bayesian test the fractional Bayes facto.(FBF) of O'Hagan(1995) is used under the assumption of Jeffreys priors, noninformative improper proirs. In this test the FBF without the need of sampling minimal training samples is much simpler to use than the intrinsic Bayes facotr(IBF) of Berger and Pericchi(1996). Finally, a simulation study is performed to show the behaviors of the FBF.

  • PDF

NONINFORMATIVE PRIORS FOR LINEAR COMBINATION OF THE INDEPENDENT NORMAL MEANS

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.203-218
    • /
    • 2004
  • In this paper, we develop the matching priors and the reference priors for linear combination of the means under the normal populations with equal variances. We prove that the matching priors are actually the second order matching priors and reveal that the second order matching priors match alternative coverage probabilities up to the second order (Mukerjee and Reid, 1999) and also, are HPD matching priors. It turns out that among all of the reference priors, one-at-a-time reference prior satisfies a second order matching criterion. Our simulation study indicates that one-at-a-time reference prior performs better than the other reference priors in terms of matching the target coverage probabilities in a frequentist sense. We compute Bayesian credible intervals for linear combination of the means based on the reference priors.

Bayesian Typhoon Track Prediction Using Wind Vector Data

  • Han, Minkyu;Lee, Jaeyong
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.241-253
    • /
    • 2015
  • In this paper we predict the track of typhoons using a Bayesian principal component regression model based on wind field data. Data is obtained at each time point and we applied the Bayesian principal component regression model to conduct the track prediction based on the time point. Based on regression model, we applied to variable selection prior and two kinds of prior distribution; normal and Laplace distribution. We show prediction results based on Bayesian Model Averaging (BMA) estimator and Median Probability Model (MPM) estimator. We analysis 8 typhoons in 2006 using data obtained from previous 6 years (2000-2005). We compare our prediction results with a moving-nest typhoon model (MTM) proposed by the Korea Meteorological Administration. We posit that is possible to predict the track of a typhoon accurately using only a statistical model and without a dynamical model.

Noninformative Priors for Fieller-Creasy Problem using Unbalanced Data

  • Kim, Dal-Ho;Lee, Woo-Dong;Kang, Sang-Gil
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.71-84
    • /
    • 2005
  • The Fieller-Creasy problem involves statistical inference about the ratio of two independent normal means. It is difficult problem from either a frequentist or a likelihood perspective. As an alternatives, a Bayesian analysis with noninformative priors may provide a solution to this problem. In this paper, we extend the results of Yin and Ghosh (2001) to unbalanced sample case. We find various noninformative priors such as first and second order matching priors, reference and Jeffreys' priors. The posterior propriety under the proposed noninformative priors will be given. Using real data, we provide illustrative examples. Through simulation study, we compute the frequentist coverage probabilities for probability matching and reference priors. Some simulation results will be given.

  • PDF

Sampling Based Approach for Combining Results from Binomial Experiments

  • Cho, Jang-Sik;Kim, Dal-Ho;Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • In this paper, the problem of information related to I binomial experiments, each having a distinct probability of success ${\theta}_i$, i = 1,2, $\cdots$, I, is considered. Instead of using a standard exchangeable prior for ${\theta}\;=\;({\theta}_1,\;{\theta}_2,\;{\cdots},\;{\theta}_I)$, we con-sider a partition of the experiments and take the ${\theta}_i$'s belonging to the same partition subset to be exchangeable and the ${\theta}_i$'s belonging to distinct subsets to be independent. And we perform Gibbs sampler approach for Bayesian inference on $\theta$ conditional on a partition. Also we illustrate the methodology with a real data.

  • PDF

Nonparametric Bayesian Multiple Comparisons for Geometric Populations

  • Ali, M. Masoom;Cho, J.S.;Begum, Munni
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1129-1140
    • /
    • 2005
  • A nonparametric Bayesian method for calculating posterior probabilities of the multiple comparison problem on the parameters of several Geometric populations is presented. Bayesian multiple comparisons under two different prior/ likelihood combinations was studied by Gopalan and Berry(1998) using Dirichlet process priors. In this paper, we followed the same approach to calculate posterior probabilities for various hypotheses in a statistical experiment with a partition on the parameter space induced by equality and inequality relationships on the parameters of several geometric populations. This also leads to a simple method for obtaining pairwise comparisons of probability of successes. Gibbs sampling technique was used to evaluate the posterior probabilities of all possible hypotheses that are analytically intractable. A numerical example is given to illustrate the procedure.

  • PDF

A Bayesian Criterion for a Multiple test of Two Multivariate Normal Populations

  • Kim, Hae-Jung;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.97-107
    • /
    • 2001
  • A simultaneous test criterion for multiple hypotheses concerning comparison of two multivariate normal populations is considered by using the so called Bayes factor method. Fully parametric frequentist approach for the test is not available and thus Bayesian criterion is pursued using a Bayes factor that eliminates its arbitrariness problem induced by improper priors. Specifically, the fractional Bayes factor (FBF) by O'Hagan (1995) is used to derive the criterion. Necessary theories involved in the derivation an computation of the criterion are provided. Finally, an illustrative simulation study is given to show the properties of the criterion.

  • PDF

Bayesian Reliability Estimation for Small Sample-Sized One-shot Devices (작은 샘플 크기의 One-shot Devices를 위한 베이지안 신뢰도 추정)

  • Mun, Byeong Min;Sun, Eun Joo;Bae, Suk Joo
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.99-107
    • /
    • 2013
  • One-shot device is required to successfully perform its function only once at the moment of use. The reliability of a one-shot device should be expressed as a probability of success. In this paper, we propose a bayesian approach for estimating reliability of one-shot devices with small sample size. We employ a gamma prior to obtain the posterior distribution. Finally, we compare the accuracy of the proposed method with general maximum likelihood method.