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Abstract
In this paper we predict the track of typhoons using a Bayesian principal component regression model based

on wind field data. Data is obtained at each time point and we applied the Bayesian principal component regres-
sion model to conduct the track prediction based on the time point. Based on regression model, we applied to
variable selection prior and two kinds of prior distribution; normal and Laplace distribution. We show prediction
results based on Bayesian Model Averaging (BMA) estimator and Median Probability Model (MPM) estimator.
We analysis 8 typhoons in 2006 using data obtained from previous 6 years (2000–2005). We compare our predic-
tion results with a moving-nest typhoon model (MTM) proposed by the Korea Meteorological Administration.
We posit that is possible to predict the track of a typhoon accurately using only a statistical model and without a
dynamical model.

Keywords: Bayesian principal component regression, wind field data, typhoon track prediction,
Laplace distribution, Haversine formula

1. Introduction

1.1. Motivation

A typhoon is a tropical depression originating in the southwestern ocean of northern Pacific, whose
maximum wind velocity at center is over 17 m/s (about 33 knot). Since typhoons were recorded,
about 30 typhoons have arisen every year. Most typhoons develop in the latitude 5◦–20◦ and move
in a northwest direction. Some typhoons reach Taiwan or the Chinese mainland and disappear, but
others make a turn to the northeast and reach northeastern Asia. These typhoons cause damage to
South Korea and Japan. Establishing forecasting system through typhoon analysis is essential to
minimize direct and indirect damage caused by typhoons. There are 4 prediction problems in typhoon
analysis: predictions of track, intensity, storm surge and rainfall. Among them, the most important
problem is the track prediction.

While some typhoons move zigzag, most typhoons are influenced by basic atmospheric flow due
to pressure patterns. Figure 1 shows the track of Typhoon Man-yi (the fourth typhoon in 2007), over
the pressure field. The typhoon appears to move alongside the edge of anticyclone.

In this paper, we cast the typhoon track prediction problem into the regression prediction problem
with wind field around the center of the typhoon used as predictors.
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Figure 1: Typhoon Man-yi track (blue) on the pressure field.

1.2. Previous works

Generally, there are two kinds of typhoon track prediction models. One is the dynamical models used
by most countries’ meteorological administration. Dynamical models are composed of differential
equations verified as mesoscale phenomena in the atmospheric science field. The other is the statistical
model that utilizes statistical methods such as regression using past data; however, statistical models
often play a peripheral role to support dynamical models.

Among dynamic models, European Centre of Medium-Range Weather Forecasts (ECMWF), Na-
tional Centers for Environmental Prediction (NCEP), Japan Meteorological Agency (JMA) have a
higher prediction accuracy as a Global model or typhoon-focused model. The moving-nest typhoon
model (MTM) proposed by Kim et al. (2007) constitutes an interesting example of a typhoon-only
model. This model is based on the Pennsylvania State University (PSU)/National Center for At-
mospheric Research (NCAR) mesoscale model (MM5) and has applied bogusing method suggested
by the Geophysical Fluid Dynamics Laboratory (GFDL). When we simulate typhoons, there is a
drawback that air pressure in the center of typhoon is overcharged in general models. In order to
compensate the defect, we can put stronger artificial typhoon in the atmospheric field based on a bo-
gusing method. It has auto-moving function through the typhoon track using the MM5 moving nest
system. When typhoon moves, nest grids in the system follow the typhoon and conduct integration.
They used Global Data Assimilation and Prediction System (GDAPS) results, surface sea temperature
(SST) from NCEP and best track data (longitude, latitude, maximum velocity) from the Joint Typhoon
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Figure 2: Wind vectors on 225 grid points in pressure field.

Warning Center (JTWC).
Sohn and Kim (2001) suggest a statistical model with numerical model output. They developed

a dynamic linear model based on Kalman filter model with Barotropic Adaptive-grid Typhoon Sim-
ulation (BATS) results as explanatory variables and estimated coefficient parameters for predicting a
typhoon track. However, this model requires a numerical model output.

Rozanova et al. (2010) verified explicit coordinate form through time using a Navier Stokes
equation with parameters set for various cases (baroclinic, barotropic and abnormal). Their results
were acceptable for each case, but it is difficult to classify typhoons into appropriate cases in the early
phase.

In general, dynamical models are more accurate when they are more complicated; subsequently,
they are get larger over time and require huge simulations and computations. Therefore if possible, it
is necessary for prediction to approach intuitively. There are rarely prediction methods using statistical
model only.

Song et al. (2005) shows that it is possible to deal with a typhoon track using data obtained
eidetically. They suggest a prediction model using raw wind field data. They provided a support
vector machine regression model with covariates obtained by a data reduction method. However, It
has limitations because they focus on reducing the computation load and use only one type of typhoon
which is obtained by a fuzzy c-means clustering method.

In this paper, we suggest a prediction method based on statistical models. Contrary to previous
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works except Song et al. (2005), our model has a simpler concept by using the data intuitively. We
use 2-dimensional wind field data obtained by averaging vertical values of 3-dimensional wind field
data from NCEP. In particular, wind field data of 225 grid points (15 longitude points × 15 latitude
points) around the eye of typhoon are used as covariates. Figure 2 shows a wind field pattern at certain
time point. Grid points are formed by 2.5◦ × 2.5◦.

The rest of the paper is organized as follows. In Section 2, we present regression model, data
description and appropriate prior distribution and parameters for the model. In Section 3, posterior
computation is presented. We display some results with actual typhoon track prediction problem
comparing with Kim et al. (2007). Finally, we discuss some limitation and future works in Section 5.

2. Bayesian High-Dimensional Regression Model

We fit two predictions (latitude and longitude) in parallel since the prediction is enacted on the surface
of the earth. We set the response variable y to be the differences between the present point and the
next point of latitude or longitude. We arrange u-component and v-component from 225 grid points
in order and we also set a series of the 450 × 1 vector as covariates.

Consider a simple regression model,

y = Xβ + ϵ, ϵ ∼ N
(
0, σ2I

)
, (2.1)

where the data y is an n × 1 response vector, X is a n × p design matrix and β is a p × 1 coefficient
vector. When p is large, it is known that many problems such as multicollinearity and sparsity arise.
We use the model suggested by Lee and Oh (2013). XT X can be decomposed into eigenvectors and
eigenvalues. We set a matrix A having eigen vectors that correspond to nonzero eigenvalues. They
can be expressed as follows.

XT X =
[
A ∗

] [Λ 0
0 0

] [
A
∗

]
.

A diagonal matrix which have nonzero eigen values is set to Λ. We reparametrize the Equation
(2.1) by multiplying both sides of (2.1) by (1/

√
n)Λ−1/2

1 AT
1 XT

n as follows.

y∗ = ηn + ϵ
∗, ξn ∼ N

(
0,
σ2

n
Ip

)
,

where

y∗ =
1
√

n
Λ−

1
2 AT XT y,

ηn =
1
√

n
Λ−

1
2 AT XT Xβ =

1
√

n
Λ

1
2 ATβ,

ϵ∗ =
1
√

n
Λ−

1
2 AT XT ϵ.

If some eigenvalues are 0, it means that reparametrization make the number of covariates small
because n is larger than p. It is effective to simply computation since it is a kind of dimension
reduction.

On the other hand, if all eigenvalues are nonzeros, the design matrix is regarded as principal
components of Xn. It is sufficient for this model to use the principal components as a new design
matrix. For some cases, it is proved that Bayes estimator and posterior of parameters are consistent in
Lee and Oh (2013). We estimate ηn since there is a 1-1 correspondence between βn and ηn.
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2.1. Covariate selection prior

We consider the variable selection prior as:

ηni ∼ π0δ0 + (1 − π0)hσ, i = 1, 2, . . . , pn,

where π0 is the prior probability that ηni equals 0, and hα is a distribution where α is the precision
parameter that controls degree of spreadness. We assume that each ηni, (i = 1, . . . , pn) are mutually
independent. A common choice for hα is a normal distribution with mean 0, variance σ2/α. We also
consider the Laplace or T distribution for hα.

2.2. Estimation of prior parameter

For the fast computation, we estimate the parameters π0, σ2 and α of prior using the data. The
empirical Bayes estimators, π̂0, σ̂

2, α̂, are obtained by maximizing
∏n

i=1 mi(tni|πo, σ
2, α), where

mi(tni|π0, σ
2, α) =

∫
p
(
ηni|π0, σ

2, α
)

f
(
tni|ηni, σ

2
)

dηni.

We consider following two distributions as priors and the calculation for each cases are shown as
below. First, we consider the normal distribution with probability 1 − π0 as the prior distribution as
below.

ηni
indep.∼ π0δ0 + (1 − π0)N

(
0,
σ2

α

)
, i = 1, 2, . . . , pn.

In the following manner, we derive mi functions for the normal case. In normal case, mi are
weighted sum of two probability density values and it can be easily calculated.

mi

(
tni|π0, σ

2, α
)

=

∫
f (tni|ηni) p (ηni|π0, α) dηni

=

∫ √
n

√
2πσ

exp
[
−n(tni − ηni)2

2σ2

]
×

π0I(ηni = 0) + (1 − π0)
√
α

√
2πσ

exp
−αη2

ni

2σ2

 dηni

= π0

√
n

√
2πσ

exp
− nt2

ni

2σ2

 + (1 − π0)
√

nα
2πσ2

∫
exp

[
− 1

2σ2

{
nη2

ni − 2ntniηi + nt2
ni + αη

2
ni

}]
dηni

= π0

√
n

√
2πσ

exp
− nt2

ni

2σ2

 + (1 − π0)
√

nα
2πσ2

∫
exp

− 1
2σ2


(
ηni − ntni

α+n

)2

1
α+n

−
n2t2

ni

α + n
+ nt2

ni


 dηni

= π0

√
n

√
2πσ

exp
− nt2

ni

2σ2

 + (1 − π0)
√

nα
√

2πσ
√
α + n

exp
[
− nα

2σ2(α + n)
t2
ni

]
. (2.2)

Second, we consider the Laplace distribution with probability 1 − π0 as the prior distribution as
follows. Laplace distribution is also sometimes called the double exponential distribution.

ηni ∼ π0δ0 + (1 − π0)Laplace(0, b), i = 1, 2, . . . , pn.
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We derive mi function for Laplace case in the following. Contrary to normal case, there is a separation,
whether ηni is positive or not.

mi(tni|π0, σ, b)

=

∫
f (tni|ηni, σ)p(ηni|π0, b)dηni

=

∫ √
n

√
2πσ

exp
[
−n(tni − ηni)2

2σ2

]
×

(
π0I(ηni = 0) + (1 − π0)

1
2b

exp
[
−|ηni|

b

])
dηni

= π0

√
n

√
2πσ

exp
− nt2

ni

2σ2

 + (1 − π0)
√

n

2
√

2πσb

∫
exp

[
− 1

2σ2

{
nη2

ni − 2ntniηi + nt2
ni

}
− |ηni|

b

]
dηni

= π0

√
n

√
2πσ

exp
− nt2

ni

2σ2


+ (1 − π0)

√
n

2
√

2πσb

∫ 0

−∞
exp

[
− 1

2σ2

{
nη2

ni − 2ntniηi + nt2
ni

}
+
ηni

b

]
dηni

+ (1 − π0)
√

n

2
√

2πσb

∫ ∞

0
exp

[
− 1

2σ2

{
nη2

ni − 2ntniηi + nt2
ni

}
− ηni

b

]
dηni

= π0

√
n

√
2πσ

exp
− nt2

ni

2σ2


+ (1 − π0)

1
2b

exp
[
− tni

b
+

σ2

2nb2

]
× Φ+(0)

+ (1 − π0)
1
2b

exp
[
tni

b
+

σ2

2nb2

]
× (1 − Φ−(0)), (2.3)

where Φ+(·) is the cdf of normal distribution with mean (tni + σ
2/(nb)) and variance σ2/n and Φ−(·)

is the cdf of normal distribution with mean (tni − σ2/(nb)) and variance σ2/n. In contrast with nor-
mal case, the mi function is the weighted sum of three values: normal density and two terms with
cumulative distributions.

For both cases, we can find the values π0, σ2 and α or b maximizing the product of function mi(·).
They are called empirical Bayes estimators. We use the estimators in this paper.

3. Posterior Computation

In this section, posterior calculations are accompanied with the priors based on Section 2 with π0, σ2

and α or b at their fixed empirical Bayes estimates. For the normal prior case, Lee and Oh (2013)
showed the necessary derivation given below:

ηni|tn ∼ π0(tni)δ0 + π1(tni)N
(

n
α + n

tni,
σ2

α + n

)
, i = 1, 2, . . . , pn,

where

π0(t) =
π0

√
n
σ
ϕ
( √

n
σ

t
)

π0

√
n
σ
ϕ
( √

n
σ

t
)
+ π1

1
σ
√

1/n+1/α
ϕ
(

1
σ
√

1/n+1/α
t
) ,
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ϕ(·) is the probability density function of standard normal distribution.
For the Laplace distribution prior case, we can derive the posterior distribution of ηni as below.

The posterior distribution is divided into three parts. For the first term, we draw 0 for ηni with weight
obtained from the first term of (2.3). For the second and third terms, their posterior distributions
are distributed as truncated normal distribution. When ηni is less than 0, the posterior for ηni are
drawn from truncated normal distribution with mean tni + σ

2/(nb) and variance σ2/n with weight
obtained from the second term of (2.3). Otherwise, the posterior for ηni are drawn a truncated normal
distribution with mean tni − σ2/(nb) and variance σ2/n with weight obtained from the last term of
(2.3).

π(ηni|tni, π0, σ, b)
∝ f (tni|ηni, σ) p(ηni|π0, b)

=

√
n

√
2πσ

exp
[
−n(tni − ηni)2

2σ2

]
×

(
π0I(ηni = 0) + (1 − π0)

1
2b

exp
[
−|ηni|

b

]
I(ηni , 0)

)
= π0

√
n

√
2πσ

exp
− nt2

ni

2σ2

 I(ηni = 0)

+ (1 − π0)
√

n
√

2πσ

1
2b

exp
[
−n(tni − ηni)2

2σ2 − |ηni|
b

]
I(ηni , 0)

= π0

√
n

√
2πσ

exp
− nt2

ni

2σ2

 I(ηni = 0)

+ (1 − π0)
√

n
√

2πσ

1
2b

exp
[
−n(tni − ηni)2

2σ2 +
ηni

b

]
I(ηni < 0)

+ (1 − π0)
√

n
√

2πσ

1
2b

exp
[
−n(tni − ηni)2

2σ2 − ηni

b

]
I(ηni > 0)

= π0

√
n

√
2πσ

exp
− nt2

ni

2σ2

 I(ηni = 0)

+ (1 − π0)
1
2b

exp
[
tni

b
+

σ2

2nb2

] √
n

√
2πσ

exp

− n
2σ2

(
ηni −

(
tni +

σ2

nb

))2 I(ηni < 0)

+ (1 − π0)
1
2b

exp
[
− tni

b
+

σ2

2nb2

] √
n

√
2πσ

exp

− n
2σ2

(
ηni −

(
tni −

σ2

nb

))2 I(ηni > 0).

3.1. BMA and MPM estimators

We consider two estimators of ηn. The Bayesian model averaging (BMA) estimator is a mixture of
posterior mean vector and the weights are derived from (2.2). In normal case, the BMA estimator is

η̂n
BMA = π1(tn)

n
α + n

tn.

The median probability model (MPM) estimator is a vector where elements are 0 when π1(tn) is
less than 1/2. When π1(tn) is bigger than or equal to 1/2, its elements are exactly the same as BMA
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estimator. In the same manner, the MPM estimator for normal case is

η̂n
MPM =

n
α + n

tnI
(
π1(tn) >

1
2

)
.

On the other hand, in the Laplace case, both estimators are calculated more complicate because of
truncation. The BMA estimator is

η̂n
BMA = π1(tn)µn,

where tn = (tn1, . . . , tn,ni ) and µn = (µn1, . . . , µn,ni ).
For each i, when the tni is less than 0, µni is defined as

tni +
σ2

nb
+

ϕ

(
− tni+

σ2
nb

σ/
√

n

)
Φ

(
− tni+

σ2
nb

σ/
√

n

) .
On the other hand, when the elements of tn is larger than or equal to 0, µni is defined as

tni −
σ2

nb
−
ϕ

(
− tni− σ2

nb

σ/
√

n

)
Φ

(
tni− σ2

nb

σ/
√

n

) .
We aggregate the two values with probabilities calculated above.

Posterior median of the parameter was calculated explicitly in the Johnstone and Silverman (2005),
especially for the case when σ and n are 1. The median estimator of ηn is

η̂n
MED =

(
η̂MED

n1 , . . . , η̂MED
np

)
.

For tni > 0, η̂ni
MED, the ith element of η̂n

MED is

tni −
σ2

bn
+

σ
√

n
Φ−1

[
1 −

[
Φ

{ √
n
σ

(
tni −

σ2

bn

)
+ exp

(
2tni

b

) (
1 − Φ

( √
n
σ

(
tni +

σ2

bn

)))}
/2(1 − π0)

]]
and for negative cases, we can derive the median by using formula med(x) = −med(−x).

3.2. Prediction

Prediction error for new observation is derived from η̂n. Prior to that, we estimate the prediction value
for new observation as below.

E(yn+1|y1, . . . , yn) = E
[
E (yn+1|y1, . . . , yn, βn+1) |y1, . . . , yn

]
= E

[
Xn+1βn+1|y1, . . . , yn

]
= Xn+1β̂n = Xn+1

(√
nA1Λ

− 1
2

1 η̂n

)
, (3.1)

where η̂n can be chosen η̂n
BMA or η̂n

MPM and Xn+1 is a design matrix that new observations are added
to (n + 1)th row. The difference between true observation and (3.1) is prediction error at a given time.
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Figure 3: PC vector (1st, 2nd, 3rd, 5th PC, upper row), (20th, 120th, 220th, 320th PC, lower row).

4. Results

4.1. Track prediction

The Joint Typhoon Warning Center (JTWC) managed by U.S. Navy Observatory is an organization
that analyzes and forecasts tropical depression. They provide annually the best track data. The best
track data consist of the position and intensity of typhoons for the duration of its existence. We
obtained the data from 1950 to 2013 and we obtained the wind field data from the NCEP. There are
225 points (including wind vector) and each vector can be divided into two components: east-west
direction (u-component) and south-north direction (v-component). The ith row of Xn is made up for
225 u-components and 225 v-components of the ith time point. We set yn be the vector of positions
changes of typhoon in longitude or latitude. We use data of 3 years (2006–2008) and yn has a total
887 time points.

PC vectors in the upper row in Figure 3 show a similar pattern that general flow rotates on center
clockwise and the rest rotate reversely. On the other hand, certain PC vectors in the lower row show
various patterns. The former have posterior probabilities over 0.5 and the latter have significantly
lower probabilities. We use the whole PC in the analysis in this paper in order to lessen prediction
error.

4.1.1. Comparison to Kim et al. (2007)

There are three lines in Figure 4: original typhoon track (black), predicted typhoon track by BMA
(red) and predicted typhoon track by MPM (blue). The figure shows that BMA and MPM estimators
work similarly and both predicted tracks do not follow the original track in the last stage of the
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Figure 4: Predicted typhoon track for 13th typhoon in 2006.

typhoon. Detecting a curving point is very important for typhoon preparation. In this case, it is quite
similar to the original curving point.

There are four graphs in Figure 5: BMA prediction error for longitudinal case, MPM prediction
error for longitudinal case, MPM prediction error for latitudinal case and BMA prediction error for
latitudinal case from upper left clockwise. For all cases, prediction errors are large in the endpiece
because the typhoon disappeared irregularly in the last stage.

Figure 6 corresponds with lower-left in Figure 4. At that time point, wind vector at 225 points
around the typhoon eye are presented in the figure and the prediction result is presented in the real
scale (red line); consequently, there are no strong movement toward higher latitude and the red line
lies in the same latitude. Therefore, it is reasonable to predict the typhoon track by using wind vector.

Kim et al. (2007) shows their prediction results for 14 typhoons in 2006. They give 24 hour
ahead typhoon track forecasts. Table 1 shows the prediction errors of three forecasting methods and
that of the prediction method given in Kim et al. (2007). A total of eight typhoons typhoons which
correspond with JTWC data are included in the results of Table 1.

We divide into two parts: longitude and latitude. Prediction using the method in Section 3.2 is
applied to each part separately. In order to aggregate the results from both parts, We calculate the
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Figure 5: Prediction errors for 13th typhoon in 2006.

difference d between true track and prediction track by using Haversine formula as follows.

d = 2r · arcsin

√sin2
(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
λ2 − λ1

2

) ,
where r is a radius of the earth, ϕ1, ϕ2 are a true latitude and a prediction latitude and λ1, λ2 are a
true longitude and a prediction longitude respectively. It is necessary to use this formula because the
distance between two points becomes different when the latitude is higher.

First, we consider the case that all parameters are fixed. π0 is fixed with 0.5 since it means that the
probability to choose degenerate distribution or normal distribution is same as 0.5. σ is fixed with the
least square estimator of the regression model for longitude and latitude, respectively. α is fixed with
1 and it means that the variance of each yi is the same as ηi’s

Second, the values for all parameters are fixed with empirical Bayes estimates. For both cases, π0
are so high that the probability of choosing degenerate distribution is larger than the other.

Third, for Laplace distribution case, we set the values for all parameters with empirical Bayes
estimates in the same manner.

In most cases, BMA estimator predict better than MPM estimator because the latter shrink many
parameters to 0. When σ is fixed with least square estimator of general regression model, normal
prior works better than Laplace prior; however, Laplace prior works better than Normal prior when
σ is fixed with empirical Bayes estimator. Actually, under the appropriate conditions, the prediction
error in this paper is smaller than the one calculated by MTM in Kim et al. (2007).
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Figure 6: Wind vector (19th point in the 13th typhoon in 2006).

Table 1: Prediction errors for BMA, MPM and MTM cases

TP ID BMA MPM Median MTM
(1) (2) (3) (1) (2) (3) (3) (4)

0606 183.3 205.2 193.7 191.2 204.6 197.4 179.3 186.5
0607 186.8 207.6 203.6 193.5 207.6 217.3 202.3 221.0
0608 106.8 209.9 108.3 104.5 209.8 109.5 115.2 152.1
0609 141.1 223.4 136.8 152.1 224.0 144.7 143.3 143.8
0610 192.0 244.7 191.7 190.1 244.2 199.8 192.0 182.5
0613 163.4 241.3 152.8 162.7 241.3 149.1 155.6 180.1
0614 195.0 228.8 191.5 201.6 228.6 193.9 200.8 166.8
0618 199.6 246.5 207.2 202.7 246.6 213.9 209.9 186.5
Ave 172.8 227.2 174.4 176.3 227.1 178.8 176.2 178.2
sd 29.8 16.0 28.9 31.4 16.1 35.7 31.1 31.8

(1) σ̂ = 1.26 (lon), 0.95 (lat), empirical Bayes estimates of σ when π0 and α are fixed with 0.5 and 1 respectively with normal
prior, (2) π̂0 = 0.97 (lon), 0.96 (lat), σ̂=0.06 (lon), 0.04 (lat), α̂ = 0.003 (lon), 0.004 (lat), empirical Bayes estimates of π0, σ,
and α with normal prior, (3) π̂0 = 0.96 (lon), 0.94 (lat), σ̂ = 1.6 (lon), 1.1 (lat), b̂ = 0.4 (lon), 0.3 (lat), empirical Bayes estim-
ates of π0, σ and α with Laplace prior, (4) MTM = moving-nest typhoon model.

5. Concluding Remarks

We applied empirical Bayes estimates that made computation fast. Within reasonable limits, we will
give a prior distribution for some parameters in place of empirical Bayes estimates.

In this paper, we mainly use 2-dimensional wind field data from averaging 3-dimensional data
vertically. There is loss of information using 2-dimensional data because the original data has 3-
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dimensional information; consequently, we should check the gap between the information.
In addition to above, we consider a peculiarity in the typhoon. Flow near the eye of typhoons

have very small effect because it just rotates on the center. The wind near the eye of typhoon is very
strong; however, it rarely influences the track of typhoon. In this paper, we use all the wind field data
including flow near the eye of typhoons and it may cause a larger prediction error.

In the future works, we will use all the 3-dimensional data without loss of information and it
yields heavy computation load. We should suggest a method that control a huge dataset with fast
computation without loss of accuracy. Furthermore, we should distinguish the flow near the eye of
the typhoon and the flow moving the typhoon in order to lose the error generated by the flow near the
eye of the typhoon.

We will face a sparsity problem when the number of variables increases. In some cases, the
elements of MPM estimator will be all 0’s. We should control the condition adjust to situation because
it will be the most important problem.

Finally, we can give the prior distribution for some parameters in place of using empirical Bayes
estimators.
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