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A Bayesian Criterion for a Multiple test of
Two Multivariate Normal Populations

Hea Jung Kim!) and Young Sook Son2)

Abstract

A simultaneous test criterion for multiple hypotheses concerning comparison of two
multivariate normal populations 1s considered by using the so called Bayes factor
method. Fully parametric frequentist approach for the test is not available and thus
Bayesian criterion is pursued using a Bayes factor that eliminates its arbitrariness
problem induced by improper priors. Specifically, the fractional Bayes factor (FBF) by
O’'Hagan (1995) is used to derive the criterion. Necessary theories involved in the
derivation and computation of the criterion are provided. Finally, an illustrative
simulation study is given to show the properties of the criterion.

Keywords : multivaniate normal populations, Jeffreys prior, noninformative improper prior,
fractional Bayes factor(FBF), intrinsic Bayes factor(IBF), posterior probability.

1. Introduction

Let [, and II, be two independent p-variate normal populations, where for
k=1,2, II,~ N,(u;, X,) with a p X 1 unknown mean vector g, and a p X p unknown

covariance matrix 2%, . Suppose that we wish to do a multiple test composed of four models,

MD . F25 + Ho and 2] =+ 22,

My py = and 2, = 2, (1.1)
My : py # pp and 2 = 2y, '
My :py = p, and 2, F 2.

In the frequentist approach, test problem of two multivariate normal means and/or
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covariance matrices has been studied by many authors and various approximate procedures
have been proposed, including Siotani (1987) and Yao (1965) for the multivariate
Behrens-Fisher problem, Nagao (1973) and Perlman (1980) for the test of equality of
covariance matrices, and Anderson (1984) for the equality of two multivariate populations. We
refer Krzanowski and Marriott (1994) for the other frequentist methods. But, a test (say,
numltiple test) that simultaneously tests all the models, M, through MS;, has not been seen

yet. The Bayesian approach, however, to the multiple test can be seen in Kim and Kim
(2001). They used the arithmetic intrinsic Bayes factor (AIBF) by Berger and Pericchi (1996)
for deriving the multiple test criterion. Even though the criterion performs well in  the
multiple test, it is impractical when the dimension of multivariate and the number of
observations get larger, 1.e. the number of minimal training samples required for calculating
the AIBF increases.

To circumvent the problem, in this paper, we propose an alternative Bayesian criterion for
the multiple test. It is obtained by use of the fractional Bayes factor approach introduced by
O’Hagan (1995). Then we develop a numerical technique to calculate the criterion.

In the next section, the FBF, the IBF, and the posterior probability of hypothesis are
introduced. In section 3, we compute the FBF, and in section 4, a Bayesian criterion proposed
in this paper is applied to some simulated data.

2. The Fractional Bayes Factor

Suppose that we wish to test g models,
M;: X ~ fi(X6), 6,€06;,
for 1 =1,2,...,q, with a random sample X = {X|, X,, ..., X,,} of size n, where f(X|6;)
is a probability density function, and #; and @; are a parameter vector and a parameter

space under the model M;, respectively. We define the function of a random sample X and a

constant & as follows, for 7 = 1,2,...,4q, /¥ ¢,
_ m(X|b)
Bi(X10) = = X\’
where
m(X16) = [ 7 (8)LN61X)d0;, @1

7,(8,) is a prior distribution of &,;, L;(8;|X)=1I,—, f;( X168, is a likelihood function, and
b is a constant such that 0<( #<1.
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The usual factor B as a Bayesian tool to test the model M; to the model M; is defined
by
m;(Xlb=1)
B{X\b=1) = —L——"-,
A XIb=1 = Xlo=1)
where m;( X|b=1) is usually called a marginal or a predictive density of the model M;.

The first step in a Bayesian inference is to choose the prior distributions of all the
parameters in hypotheses or models. Default priors, most of which are typically noninformative
improper, are objective priors that need not any subjective consideration. But the Bayes factor

B, {X|b=1) cannot be used because of arbitrary constants incorporated into the Bayes
factor if priors are noninformative improper priors, 71'?’( #;) and 71'?’( 8;), where throughout

this paper the notation of superscript N implies the noninformative improper prior or its use,
and have different dimensions in parameters. The fractional Bayes factor(FBF) of
O'Hagan(1995) and the intrinsic Bayes factor(IBF) of Berger and Pericchi(1996, 1998) to
overcome the problem due to the arbitrariness of noninformative improper priors are automatic
and objective.

The idea of IBF is to use minimal training samples {Xm(l),l=1,2,...,L} to convert the
improper prior to the proper posterior density. The minimal training sample implies the part of

full sample with the minimal sample size to guarantee 0< m™(X|b=1)< o for all i. The

IBF, B,(,-(l ), given a minimal training sample, X ,(/), for some / is defined by
Bli() = BM(Xlb=1) - B X . (D)]b=1).

But, practically to prevent the IBF from depending on only one minimal training sample is
used an arithmetic IBF(AIBF) as substituting an arithmetic mean of B 2’( X, (IH6=1),
! =1,2,...,L, for Bf}’(Xm(l)Ib=l) for some [, a geometric IBF(GIBF) as a geometric

mean, or a median IBF(MIBF) as a median. The FBF uses a fraction b of each likelihood
function to change noninformative improper priors into proper priors. The FBF is defined by

BE=BY(X|b=1) - BY(X|¥). (2.2)

O’Hagan proposed three ways to set b, where m is the minimal training sample size: (a)
b= m/n, when robustness is no concern, (b} &=#n ‘max{m,V n}, when robustness is a

serious concern, and (c¢) b= #x 'max{m, log n}, as an intermediate option. Generally, for a
Bayesian multiple test the posterior probabilities of hypotheses via the Bayes factors are
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useful. Under the assumption of prior probability p; of the model M; being true the posterior

probability of M; via the FBF is given by

-1

POIX) = [ Zoipd-BE) L i=12.0 23)

3. Computation of The FBF

Let u denote the common value of #;=p,, and X the common value of 2;=2, We
use Jeffreys prior 7, i=0,1,2,3, noninformative improper prior, for each model M;,i=0,1

,2.3, under the assumption of independence between a mean vector and a covariance matrix

as follows

)

2y, 0, 50 5) =l 15 2 7, 200, 200,
-1+
2y, ) =iz 2, 30, 4D
LD ‘
7y (e, 2, Z) =2 ¢ , >0,
N ) -t o+
my (e, 21, 2,) = c3 [T} 12| , 2120, 2,00,

where ¢;, i =0,1,2,3, is an undefined normalizing constant.
Let X;={X 4, X, ....X s} be a p-variate random sample of size #, from II, with a

distribution N,(z4, X)), £=1,2. We use the following notation throughout this paper,

n = n1+n2

X = Xl Xz}

— 21Xk/

X = s

- Zlnk Xe

X = ” ,

Vi = ;(ij_ XX 45— X,

v = g} Iﬁl(in_—X‘)(Xk/'-MXv)'-

The likelihood function L, ), = 0,1,2,3, under each hypothesis is given by
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_m o m
Lo(py, 19,21, 5) = I (27 %135, ¢ exp{——%h{fk—lﬂil},

np .1 1
Ly(x, ) = @0 151 ten{ -4 vizal), .

_np _.n :
L, m.5) = @0 151 Heexn|{ - S o157'20),

_ b __A_’.li

Ly, 5,.5) = M@0 15l ?ew{-uiz'el),

where 2= V+n(p— X)(p— X)', Q= Vit nlu— XN u— Xp)', and 2= Vi +n (s

- —Xk)(/—‘k_ _Xk),-

After using the kernel of multivariate normal density for the integration over a mean vector

and the kernel of the inverted Wishart density for the integration over a covariance matrix

the computation result of the function (2.2) with (3.1) and (3.2) is as follows

my( X|b) =
mllv(le) =
my( X|b) =

my( X|6) =

where

_ {bn—1» , b _ b
w2m) P L d OV omy E,

~Abm=1» _bm=-1 _»
¢\ (27) 2oamvi toa ?,

_ (=21 _ bm—2 _ b
C2(27l') 2 A(Z)I V1+ V2| 2 Hi:lnk 2 ,

_ _bnp .
R AN

bny
2

440 = 2 ° b’—z“r,,{%(bnk—l)},
Hn—1) _ bnp

A1) =2 2 p 2 rp{%(zm—l)}.
pén—2) _ bnp

42 =2 ¢ p ? I‘p{—%—(bn—Z)},
bnyp bnup

443) = 2Tb_7rp{%zmk},
Wk(IJ) = (u— 7(/@)'5;1(#— —Xk), Sp= Vk/Nk,
=1

ry = = © mre--5h.

V7wt wi)

(3.3)

bn,

dy,

The integration in m3( X|b) of (3.3) is not analytically solved. This integration can be

performed by the numerical integration procedure or Monte Carlo integration. In a simulation

study of section 4, we estimate the integral function using the Monte Carlo integration method

through the importance sampling. In mév( X|b), we need to compute the following integral
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M= f_mwg(#)dﬂ = f—mm_gﬁglf#(ﬂ) - fw)de = Efﬂ(;o[ 7.1 ]

bn,

where g(g) = IT%- {1+ Wi(p)) B , and f,(#) is an importance sampling density function.

The Monte Carlo estimate of M is M=l (JLIM, where pu;, j=1,2,...,G, is
G Fulu;)

generated from the importance sampling density f,(x). It is well known that Van( n) is
small when f,(z) o |g(p)|. The function g(x) can be rewritten as

g(y) = Hi=1exp{— % bng - In(1 + Wk(#))}
o< exp{— 5 (bmWi(u) + by W 1))
oc exp{— % (ﬂ‘"#o)'f(#_ﬂo)},

where the first proportional term is obtained using only the first term of Taylor series on
W) =0 of In{l+ Wi(g)}. Thus the importance sampling density function of g is
Ny, J7Y), where puy=K X, +(I,—K) Xy, K=bn,(S;)7", J=b(n,S7 '+ 7,57 1), and
I, is a pXp identity matrix throughout this paper.

The size m of a minimal training sample equals to the condition that the marginal density
my(X|b=1) of encompassing model M, is to be finite. If %, < p, then rank(V,)<n,—
1<p—1. But |V, =0, since a matrix V, is a pxp matrix. Hence n,=p+1 fork=1,
2. Thus the size of a minimal training sample is m = 2(p+1). The conventional selection
of a fraction, b, of likelihood function in the computation of FBF is b= m/n = 2(p+1)/n.
For k= 1,2 the sample size n, must be restricted to #,> [p/b]+1, where [ -] is a
Gauss symbol, in order that the arguments of gamma functions in mM( X|b), i=0,1,2,3,

are to be positive.
Finally, the computation of the FBF, and the posterior probabilities of hypotheses via the
FBF are straightforward from (2.2) and (2.3).

4. A Simulation Study
We directly follow a simulation study of Kim and Kim(2001) originally based on the

simulation scheme in Marks and Dunn(1974). All the experiments are performed for two

independent p-variate (p = 2,4) normal samples with sample size n, = ny;=30, the
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importance samples of size 500, and 200 replications assuming equal prior model probabilities.

Let 0, and 1, be p-variate row vectors of zeroes and ones, respectively. Now we set
11 =0, wu= [2'(1+\/}),0,,_1]', 21=1,, and 2,=/, where A is a diagonal matrix with
a vector, [A-1,p3,1,2] of diagonal elements. Here 7(A) is the measure of degree of
separation between means(covariances) of two populations. If =0 then ;= py, else p;¥ ..
If A=1 then X, =2, else X;#2,. Data with different choices, 7= 0,2 and A= 1,4,8 of
7 and A are generated. For each data the FBF’s are computed with the common use of
fraction b, b= m/n = 2(p+1)/n.

Table 4.1 shows the results of the averages and the standard deviations in parentheses of
posterior probabilities for each model based on 200 replications. Figure 4.1-46 are frequency

plots on 200 replications of posterior probabilities for each model when p = 4. Though the
plots of p = 2 are not presented here because of the limit of space, their behaviors are

similar to p = 4.

Table 4.1 : The averages and the standard deviations in parentheses of
posterior probabilities on 200 replications.

pl | Al PIMIX)  PIMIX) PIMIX)  P(MX)
1 0.0044 0.7872 0.1256 0.0829
(0.0084) (0.1448) (0.1061) (0.1141)

0l 4 0.0425 0.1355 0.0272 0.7948
(0.0453) (0.2085) (0.0894) (0.2398)

8 0.0721 0.0111 0.0012 0.9155

) (0.1213) (0.0626) (0.0070) (0.1353)
1 0.0411 0.0000 0.9589 0.0000
(0.0689) (0.0000) (0.0689) (0.0000)

21 4 0.7425 0.0000 0.2575 0.0000
(0.3064) (0.0000) (0.3064) (0.0000)

8 0.9867 0.0000 0.0133 0.0000
(0.0535) (0.0000) (0.0535) (0.0000)

1 0.0001 0.8685 0.1126 0.0188
(0.0007) (0.1999) (0.1824) (0.0997)

ol 4 0.0141 0.1691 0.0276 0.7891
(0.0627) (0.2574) (0.1060) (0.2963)

8 0.0271 0.0005 0.0003 0.9721

4 (0.0942) (0.0035) (0.0033) (0.0953)
1 0.0021 0.0000 0.9979 0.0000
(0.0158) (0.0000) (0.0158) (0.0000)

214 0.6470 0.0000 0.3530 0.0000
(0.3788) (0.0000) (0.3788) (0.0000)

8 0.9931 0.0000 0.0069 0.0000
(0.0572) (0.0000) (0.0572) (0.0000)
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Figure 4.1 : The frequency plot when (p, 7, A) = (4, 0, 1).
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Figure 4.2 : The frequency
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plot when (p, 7, A) = (4, 0, 4).
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Figure 4.3 : The frequency plot when (p, 7, 1) = (4, 0, 8).
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Figure 4.4 : The frequency plot when (p, 7, ) = (4, 2, 1).
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Figure 45 : The frequency plot when (p, r, 1) = (4, 2, 4).
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Figure 4.6 : The frequency plot when (p, 7, 1) = (4, 2, 8).
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5. Concluding Remarks

We have proposed a Bayesian criterion for a multiple test of two independent multivariate
normal populations. The test is performed by comparing with posterior probabilities of models
via the FBF under the assumption of Jeffreys priors, noninformative improper priors. This
multiple test doesn’t require the prior knowledge or test on the equality or the unequalness of
two means or two covariances, while the classical test requires that. Also, a Bayesian multiple
test suggested in this paper can be flexibly applied to the classical tests of two independent

multivariate normal populations. For example, the test of Mé 1 2\ =2y versus Mi T 2 F2
is to reject My if P(My|X)+ P(M;|X) > 0.5. Then the Beherens-Fisher problem, the test
of M, versus M,, can be solved by comparing P(MyX) with P(M; X).

Concerning with the use of the IBF, the number of minimal training samples possible over

19 e nl - nz
the full sample is L ( b +1) ( b +1). Under the work of Varshavksy(1995) based on

the theory of U-statistics the number of minimal training samples is only mn with such an

accuracy as all the possible minimal training samples. For a example of #,= n,=30, mn=

240, L=189,225 when p=1,mn=2360,L=16,483,600 when p= 2, mn=480,L = 145,422,
675, when p=3, and mn=600,L =20, 308,000,000 675, when p= 4. Now, the IBF can be
calculated by random sampling m» minimal training samples from total L minimal training
samples. Of course, a sensitivity analysis for several sets of m# minimal training samples
should be followed to check the stability of the IBF. But even though wm#n of the
BI}I,-( X,.(D|b=1) are computed, a burden of computation remains since importance sampling
for each minimal training sample must be performed. So, the computation of posterior
probabilities of hypotheses via the AIBF, GIBF, or MIBF which additionally need times for
sorting is a job requiring much more computation times than the FBF, while the FBF is very
simple to use without the need of sampling minimal training samples. Also, we can see that
the results in this paper via the FBF confirm to our theoretical expectation for the test.
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