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Abstract

A nonparametric Bayesian method for calculating posterior probabilities 
of the multiple comparison problem on the parameters of several 
Geometric populations is presented. Bayesian multiple comparisons under 
two different prior/ likelihood combinations was studied by Gopalan and 
Berry(1998) using Dirichlet process priors. In this paper, we followed the 
same approach to calculate posterior probabilities for various hypotheses in 
a statistical experiment with a partition on the parameter space induced 
by equality and inequality relationships on the parameters of several 
geometric populations. This also leads to a simple method for obtaining 
pairwise comparisons of probability of successes. Gibbs sampling 
technique was used to evaluate the posterior probabilities of all possible 
hypotheses that are analytically intractable. A numerical example is given 
to illustrate the procedure.

Keywords : Dirichlet Process Prior, Geometric Distribution, Gibbs 
Sampler, Mixture of Dirichlet Processes, Multiple Comparison, 
Nonparametric Bayes

1. INTRODUCTION

The geometric model has been widely used as a model in areas ranging from 

studies on the inspection of defective items to research involving statistical quality 

control. We consider the multiple comparisons problem (MCP) for K  geometric 

populations with parameters θ = (θ1, ,θK ), the probabilities of successes, to make 
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inferences on the relationships among the θi's based on observations. With 

equality and inequality relationships among θi's we can set up statistical 

hypotheses as under, 

  H0 : θ1 = θ2 = = θK,

H1 : θ1≠ θ2, θ2 = θ3 = = θK,

HN : θ1≠ θ2≠ θ3≠ ≠ θK.                          (1)

To our knowledge, the multiple comparison problem (MCP) among K  geometric 

populations has not been studied yet, partly because of the difficulty in handling 

the distributional aspects and the computations. The Bayesian approach to the 

MCP for beta/bionomial and normal/inverted gamma studied by Gopalan and 

Berry(1998), is extended here to the geometric populations. In a Bayesian MCP 

problem, prior probabilities on the hypotheses are elicited through specification of a 

process prior on the parameters of interest θ = (θ1, , θK ). Then posterior 

probabilities are calculated from the posterior distributions induced by the 

hypotheses. The Dirichlet process prior (DPP) is a typical objective prior 

specification. The DPP is a prior distribution on the family of distributions, which 

is dense in the space of distribution functions.

The family of DPPs is introduced by Ferguson(1973) and is extended to 

mixtures of DPP by Antoniak(1974). The introduction of Markov chain Monte 

Carlo (MCMC) methods in nonparametric Bayesian modeling was begun with 

Escobar (1988). Innovations in computations and the development of new MCMC 

schemes are found in the key contributions by Doss (1994), Bush and MacEachern 

(1996), Escobar and West (1997), MacEachern and Müller (1998), West, Müller and 

Escobar (1994). Gopalan and Berry(1998) proposed Bayesian multiple comparisons 

using Dirichlet process priors for applied normal and binomial data.

In this paper, we consider the Bayesian approach to resolve the multiple 

comparisons problem for the probabilities of successes among K  geometric 

populations, based on an hierarchical nonparametric family of Dirichlet process 

priors. Calculating posterior probabilities for the hypotheses is analytically 

intractable but can easily be evaluated using Gibbs sampling. In section 2 some 

reviews on the DPP are given, while section 3 presents the calculation of posterior 

probabilities for the hypotheses in MCP. A numerical example illustrating the 

procedure is described in section 4.
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2. PRELIMINARIES

The Dirichlet process prior G  is determined by two parameters: a distribution 

function G0 ( )  and a positive scalar precision parameter α. G0 ( )  defines the

location of the DPP. So G0 ( )  is sometimes called prior ``guess" or baseline 

prior. The precision parameter α  determines the concentration of the prior for G  

around the prior guess G0, and therefore measures the strength of belief in G0.  

Then the DPP is denoted as G∼D(G│G0,α ). For large values of α, a sampled 

G  is very likely to be close to G0. For small values of α, a sampled G  is likely 

to put most of its probability mass on just a few atoms.

Mixture of Dirichlet Process models have become increasingly popular for 

modeling when conventional parametric models would impose unreasonably stiff 

constraints on the distributional assumptions(such as finite mixture of 

distributions). Despite of the large variety of applications, the core of the mixture 

of Dirichlet process model can basically be thought of as a simple Bayes model 

given by the likelihood and prior with added uncertainty about the prior 

distribution G∼D(G│G0,α ). The more complex models typically require another 

portion to the hierarchy that allows the introduction of distributions on the 

hyperparameters α  and G0.

Consider K  geometric populations with the probabilities of success 

θ = (θ1, θ2, , θK ). Observations Y= (Y1,Y2, ,YK)  are available on these 

populations, where Yi= (yi1, , yini
)  is ni 1  vector of conditionally independent 

observations on population i, i = 1, 2, ,K ; j = 1,2, , ni  and Σ
i= 1

K

ni = n. Then 

the probability density function of yij  is 

f (yij│θi ) = θi (1− θi )
yij, yij = 0,1,2, .              (2)

We assume that the θi's come from G, and that G∼D(G│G0,α ). This 

structure results in a posterior distribution which is a mixture of Dirichlet 

processes (Antoniak 1974). Using the Polya urn representation of the Dirichlet 

process (Blackwell and MacQueen 1973), the joint posterior distribution has the 

form
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θ i∣ Y ∝ ∏
K

i=1
f( y i∣θ i)

αG 0(θ i )+ ∑
k < i
δ(θ i∣θ k)

α+ i-1
,                     (3)

where (θi│θk )  is the distribution which has a point mass on θk. For each 

i = 1, ,K , the conditional posterior distribution of θi  is given by 

θi│θk,k≠ i,Y  ∝  q0Gb (θi│yi ) + Σ
k≠ i

qk (θi│θk ),               (4)

where Gb (θi│bfyi )  is the baseline posterior distribution, 

q0∝α f (bfyi│θi )dG0 (θi ) , qk∝f (yi│θk )  and 1 = q0 + Σ
k≠ i

qk .

The multiple comparison problem of K  geometric populations is to make 

inferences concerning relationships among the θ's based on Y. Let 

Θ= θ= (θ 1,θ 2,…,θK)  : θi R, i = 1,2, ,K   be the K-dimensional 

parameter space. Equality and inequality relationships among the θ's induce 

statistical hypotheses that are subsets of Θ, i.e., , H0 : θ0= θi : θ1 = θ2 = = θK , 

H1 : θ1= θi : θ1≠ θ2 = = θK  and so on up to HN : θN= θi : θ1≠ θ2≠ ≠ θK . 

The hypotheses Hr : θr,r= 0, 1,2, ,N, are disjoint, and ∪N
r= 0θr=Θ  .

The elements of Θ  themselves behave as described by (3) and so with positive 

probability, they will reduce to some p≤K  distinct values. We denote the distinct 

values of the parameters by putting a superscript * on them. Then any realization 

of K  parameters θi  generated from G  lies in a set of p≤K  distinct values, 

denoted by θ* = (θ* ,1 θ
* ,
2 , θ*p ). The Gibbs sampling for MCP problem can be  

described through what is termed as Configuration by Gopalan and Berry (1998). 

Their definition of Configuration is restated here,

Definition: The configuration S = S1,S2, ,Sl  determines a classification of θ  

into p  distinct groups or clusters; n θ
j  = number of θi's in group j  that share the 

common parameter value θ*j . Write Kj  for the set of indices of parameters in 

group j, Kj = i : Si = j . Let Xj= Xj : Si = j  be the corresponding group of 

nKj
= Σ

i Kj

ni  observations

There is a one-to-one correspondence between hypotheses and configurations. 
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And the required computations are reduced by the fact that the distinct θi's are 

typically reduced to fewer than K  due to the clustering of the θi's inherent in the

Dirichlet process. Hence, (4) can be rewritten as:

θi│θk,k≠ i,  y  ∝  q0Gb (θi│yi) + Σ
k= 1

K *

nkq
*
k (θi│θ*k ),            (5)

with q *k∝f (yi│θ*k ), and 1 = q0 + Σ
k

nkq
*
k . In addition to simplifying notation, the 

cluster structure of the θi  can also be used to improve the efficiency of the 

algorithm.

3. POSTERIOR SAMPLING IN DIRICHLET PROCESS 

MIXTURES

We take a beta distribution as baseline prior G0  with parameters (αoi, oi )  and 

θ1, θ2, , θK  are iid from G0. Extending to a Dirichlet process analysis as outline 

in the above description results

yi│θi∼≥ (yi│θi ),                               (6)

θi│G∼G (θi ),                                   (7)

G│G0,α∼D(G│G0,α ),                          (8)

G0│ (αoi, oi )∼B(αoi, oi ).                        (9)

Here, Ge  indicates geometric distribution. Now the choice of the precision 

parameter α  in Dirichlet process is extremely important for the model. Here, we 

consider the gamma prior for α  with a shape parameter a  and scale parameter b, 

that is, α∼ Γ (a, b ) . Then the Γ (a, b )  is to be the reference prior by a→0  and 
b→0 . And we have access to a neat data augmentation device for sampling α  by 
Escobar and West(1995).

The configuration notation is more convenient to use in describing the Gibbs 

sampling algorithm. This results in sampling from the following conditional 

posterior distributions:
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(θi│Y, θk, k≠ i,α,αoi, oi )∼ q0B(ni+ αio,Σ
j= 1

ni

yij+ oi )

+ Σ
k≠ i

qk (dθi│θk ),

               (10)

(θ*j│Y,S,αoi, oi )∼B(Σ
k Jj

nk+ α*oj, Σ
k Jj

Σ
l = 1

ni

ykl+
*
oj ),       (11)

(α│η,K *)∼πηΓ(a+K *, b− log (η))

+ (1− πη )Γ(a+K *− 1, b− log (η)),
        (12)

(η│α, K *)∼B (α + 1, K ) .                            (13)

where

q0  ∝  α
Γ (αoi+ oi )

Γ (αoi ) Γ ( oi )

Γ (ni+ αoi ) Γ (Σ
j= 1

ni

yij+ oi )

Γ (ni+ Σ
j= 1

ni

yij+ αoi+ oi )

,

qk  ∝  θni

k (1− θk )
Σ
j=1

ni

yij

.

Gibbs sampling proceeds by simply iterating through (10) - (13) in order, 

sampling at each stage based on current values of all the conditioning variables.

The configuration gives the equality and inequality relationships among the θ's, 

which correspond to the partitions on the parameter space Θ  and in turn to the 

hypotheses of interest. To estimate the posterior probability of a hypothesis Hr

from a large number(L) of sample draws, we use

P(Hr│Y) 1
LΣl = 1

L

Sl
(Hr),

where Sl
(Hr)  denotes unit point mass for the case where lth draw of S, that is, 

Sl  corresponds to Hr.

The probability of equality for any two θ's can be calculated from the posterior 

distributions on hypotheses, P(Hr│Y),  r= 1, 2, ,N. This can be achieved by 

adding probabilities of those hypotheses in which θi  and θj  are equal. For 

example,



Nonparametric Bayesian Multiple Comparisons for Geometric Populations 1135

P (θi = θj│Y) 1
LΣl = 1

L

Sl
(θi = θj ) = Σ

r= 1

N

P (Hr│Y) Hr
(θi = θj ),  i≠ j,     (15)

where Sl
(θi = θj)  and Hr

(θi = θj)  denote unit point mass for the case where Sl  

and Hr  indicate θi = θj, respectively.

4. ILLUSTRATIVE EXAMPLE

In this section, we use hypothetical data to illustrate the multiple comparisons 

for the parameters of geometric populations. Here, we consider 4 geometric 

populations and sample size of 50 from each geometric distributions. In this paper, 

we consider multiple comparisons for two cases, so that true hypothesis are 

Htrue : θ1 = θ2 = θ3≠ θ4  for case I and Htrue : θ1 = θ2≠ θ3 = θ4  for case II, 

respectively.

Table 1  The observed summary statistics for each populations

Populations
Case I Case II

1 2 3 4 1 2 3 4

yi=∑
n i

j=1
yij 30 31 27 76 30 31 76 71

n i 15 15 15 15 15 15 15 15

The observed summary statistics for each case are given as Table 1. And the 

numbers of possible hypothesis are 15 for each case. For the precision parameter 

α, we consider three Gamma priors with parameters (a, b )=(1.0, 1.0), (0.1, 0.1) and 

(0.01, 0.01 )  such that same means 1 and different variances 1, 10, and 100, 

respectively. Then latter prior is fairly noninformative, giving reasonable mass to 

both high and low values of α. But, the Γ (1.0, 1.0 )  prior favors relatively low 

values of α. Also we set that each θi,i = 1, ,4  follows in priori beta with 

parameter αoi = oi = 1.0  to reflect vagueness of the prior knowledge. All the 

calculated posterior probabilities for all possible hypotheses are approximated by 

the Gibbs sampling algorithm using 40,000 iterations with 20,000 burn-in iterations. 

Table 2 and Table 3 give the calculated posterior probabilities for all possible

hypotheses of case I and case II, respectively. 
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Table 2  Calculated posterior probabilities for each hypothesis with three cases of 

(a, b )  in Case I

Hypothesis ( 1.0,1.0) ( 0.1,0.1) ( 0.01,0.01)

θ 1= θ 2= θ 3= θ 4 0.0064 0.0225 0.1883

θ 1= θ 2= θ 4≠θ 3 0.7370 0.6427 0.4412

θ 1= θ 2= θ 4≠θ 3 0.0011 0.0011 0.0006

θ 1= θ 2≠θ 3= θ 4 0.0014 0.0014 0.0005

θ 1= θ 2≠θ 3= θ 4 0.0711 0.0786 0.0633

θ 1= θ 2≠θ 3≠θ 4 0.0007 0.0004 0.0001

θ 1= θ 3= θ 4≠θ 2 0.0064 0.0053 0.0036

θ 1= θ 3≠θ 2= θ 4 0.0206 0.0239 0.0238

θ 1= θ 3≠θ 2≠θ 4 0.0048 0.0032 0.0019

θ 1= θ 2= θ 3= θ 4 0.0011 0.0011 0.0007

θ 1= θ 4≠θ 2= θ 3 0.0015 0.0010 0.0011

θ 1≠θ 2= θ 3= θ 4 0.1159 0.1503 0.1319

θ 1≠θ 2= θ 4≠θ 3 0.0013 0.0012 0.0009

θ 1≠θ 2≠θ 3= θ 4 0.0004 0.0001 0.0001

θ 1≠θ 2≠θ 3≠θ4 0.0303 0.0672 0.1420

It is evident from Table 2, that the hypotheses for "θ1 = θ2 = θ3≠ θ4" have the 

largest posterior probabilities 0.7370, 0.6427, and 0.4412 for all priors of the 

precision parameter α, respectively. This suggests that the data lend greatest 

support to equalities for θ1 = θ2 = θ3  and θ4  being different from the others. Thus 

this example shows good performance of the Bayesian multiple comparisons 

method for several geometric parameters.
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Table 3  Calculated posterior probabilities for each hypothesis with three cases of 

(a, b )  in Case II

Hypothesis ( 1.0,1.0) ( 0.1,0.1) ( 0.01,0.01)

θ 1= θ 2= θ 3= θ 4 0.0079 0.0470 0.2795

θ 1= θ 2= θ 4≠θ 3 0.0006 0.0010 0.0004

θ 1= θ 2= θ 4≠θ 3 0.0000 0.0000 0.0000

θ 1= θ 2≠θ 3= θ 4 0.6763 0.5672 0.3444

θ 1= θ 2≠θ 3= θ 4 0.1177 0.1192 0.0914

θ 1= θ 2≠θ 3≠θ 4 0.0072 0.0050 0.0038

θ 1= θ 3= θ 4≠θ 2 0.0000 0.0000 0.0000

θ 1= θ 3≠θ 2= θ 4 0.0008 0.0011 0.0009

θ 1= θ 3≠θ 2≠θ 4 0.0000 0.0000 0.0000

θ 1= θ 2= θ 3= θ 4 0.0001 0.0002 0.0002

θ 1= θ 4≠θ 2= θ 3 0.0118 0.0095 0.0071

θ 1≠θ 2= θ 3= θ 4 0.0016 0.0015 0.0009

θ 1≠θ 2= θ 4≠θ 3 0.0001 0.0001 0.0002

θ 1≠θ 2≠θ 3= θ 4 0.1391 0.1487 0.1103

θ 1≠θ 2≠θ 3≠θ4 0.0368 0.0995 0.1609

Table 3 indicates that the hypotheses for "θ1 = θ2≠ θ3 = θ4" have the largest 

posterior probabilities 0.6763, 0.5672, and 0.3444 for all priors of the precision 

parameter α, respectively. This suggests that the data lend greatest support to 

equalities for θ1 = θ2  and θ3 = θ4  being different from the others. Also, Thus this 

example shows good performance of the Bayesian multiple comparisons method for 

several geometric parameters.



M. Masoom Ali ․ Cho, J.S ․ Munni Begum1138

Table 4  Pairwise Posterior Probabilities with three cases of (a, b )  in Case I

Hypothesis (1.0, 1.0 ) (0.1, 0.1 ) (0.01, 0.01 )

θ1 = θ2 0.8170 0.7463    0.6939

θ1 = θ3 0.7711 0.6948    0.6570

θ1 = θ4 0.0141 0.0283    0.1916

θ2 = θ3 0.8656 0.8197    0.7644

θ2 = θ4 0.0167 0.0311    0.1945

θ3 = θ4 0.0104 0.0254    0.1901

Table 4 shows the pairwise posterior probabilities for the equalities of pairs of θ

's in case I. By table 4, the equalities of (θ1 = θ2) and (θ2 = θ3) have the largest 

posterior probabilities (0.8170, 0.7463, 0.6939) and (0.8656, 0.8197, 0.7644) for three 

cases of (a, b ), respectively. This suggests that there is strong evidence in the 

equalities θ1 = θ2  and θ2 = θ3.

Table 5  Pairwise Posterior Probabilities with threee cases of (a, b )  in Case II

Hypothesis (1.0, 1.0 ) (0.1, 0.1 ) (0.01, 0.01 )

θ1 = θ2 0.8025 0.7344    0.7157

θ1 = θ3 0.0165 0.0541    0.2846

θ1 = θ4 0.0152 0.0522    0.2835

θ2 = θ3 0.0219 0.0590    0.2879

θ2 = θ4 0.0198 0.0566    0.2868

θ3 = θ4 0.8423 0.7774    0.7451

Table 5 demonstrates the pairwise posterior probabilities for equality of pairs of 

θ's in case II. By table 5, the equalities of (θ1 = θ2) and (θ3 = θ4) are most large 

posterior probability (0.8025, 0.7344, 0.7157) and (0.8423, 0.7774, 0.7451) for three 

cases of (a, b ), respectively. This suggests that there is strong evidence in the 

equalities θ1 = θ2  and θ3 = θ4.

Up to this point, we have considered the problem of developing a Bayesian 

multiple comparisons for means of K  geometric populations. As an alternative to a 

formal Bayesian analysis of a mixture model that usually leads to intractable 
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calculations, the DPP is used to provide a nonparametric Bayesian method for 

obtaining posterior probabilities for various hypotheses of equality among 

population means.

Extension of the above approach to the multiple comparison problems for the 

another population is straightforward. The research topics pertaining to the 

extension of the method and the examination of its performance are worthy to 

study and are left as a future subject of research.
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