First, we recall the results for prime-producing polynomials related to class number one problem of quadratic fields. Next, we give the relation between prime-producing cubic polynomials and class number one problem of the simplest cubic fields and then present the conjecture for the relations. Finally, we numerically compare the ratios producing prime values for several polynomials in some interval.
이 논문의 목적은 소수(素數, prime number) 개념을 처음 배우는 학생들이 소수와 그 관련 개념들을 어떻게 이해하고 있는지를 탐구하기 위한 것이다. 이를 위하여 소수와 합성수 개념을 학습한 직후의 중학교 1학년 학생들에게 설문조사를 중심으로 자료를 수집하고 분석하였다. 연구 결과, 학생들은 주어진 자연수의 소수성을 판정하기 위한 소수의 기능적인 정의를 선호하며, 주어진 자연수의 약수를 찾는 것에만 주목하여 소수와 합성수를 곱셈적 관계로 이해하는데 어려움을 나타내었다. 이러한 결과는 학생들이 자연수의 곱셈적 기본 단위로서 소수 개념의 본질적인 중요성을 인식하고 산술의 기본 정리가 보장하는 자연수의 곱셈적 구조를 이해할 수 있도록 하는 교수학적 전략의 필요성을 제안한다.
소수의 개념적 측면에 대한 학생들의 이해 부족 현상이 목격되는바 본 연구는 학생들이 소수 개념의 본질을 바르게 이해하도록 돕고자, 소수 개념 발전 역사를 조망하고 교과서의 개념 도입 방법을 분석하였다. 고대 그리스에서 소수는 곱셈 원자였다. 당시 단위는 수가 아니었지만, 소수 표기 개발로 단위가 수로 통합되면서 1의 소수성이 문제시 되었다. 소인수분해의 유일성을 근거로 1이 소수에서 배제되었으며, 이후 발전을 거듭하여 prime 개념과 irreducible 개념이 자리 잡게 되었다. 소수 개념 발전의 역사는 소수가 곧 곱셈 원자라는 사실이 개념의 본질임을 명백히 드러낸다. 교과서 분석 결과, 교과서는 소수 개념을 결정론적 시각 혹은 게임으로 도입하여 개념 본질을 드러내지 못하는 문제, 개념 도입 후 분석적 개념 정의로 급진적 전개가 이루어지는 문제 등이 있었다. 분석 결과에 기초하여 소수의 개념적 면에 주목하도록 돕는 것과 관련하여 몇 가지 교수학적 시사점을 제공하였다.
Let α be a complex number with 𝕽α > 0. Let the functions f and g be analytic in the unit disc E = {z : |z| < 1} and normalized by the conditions f(0) = g(0) = 0, f'(0) = g'(0) = 1. In the present article, we study the differential subordinations of the forms $${\alpha}{\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}+{\frac{zf^{\prime}(z)}{f(z)}}{\prec}{\alpha}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}}+{\frac{zg^{\prime}(z)}{g(z)}},\;z{\in}E,$$ and $${\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}{\prec}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}},\;z{\in}E.$$ As consequences, we obtain a number of sufficient conditions for star likeness of analytic maps in the unit disc. Here, the symbol ' ${\prec}$ ' stands for subordination
Let ${\alpha}$ be a positive integer, and let $p_1$, $p_2$ be two distinct prime numbers with $p_1$ < $p_2$. By using elementary methods, we give two equivalent conditions of all even near-perfect numbers in the form $2^{\alpha}p_1p_2$ and $2^{\alpha}p_1^2p_2$, and obtain a lot of new near-perfect numbers which involve some special kinds of prime number pairs. One kind is exactly the new Mersenne conjecture's prime number pair. Another kind has the form $p_1=2^{{\alpha}+1}-1$ and $p_2={\frac{p^2_1+p_1+1}{3}}$, where the former is a Mersenne prime and the latter's behavior is very much like a Fermat number.
A graph G of order n has prime cordial labeling if its vertices can be assigned the distinct labels 1, $2{\cdots}$, n such that if each edge xy in G is assigned the label 1 in case the labels of x and y are relatively prime and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In this paper, we give a complete characterization of complete graphs which are prime cordial and we give a prime cordial labeling of the closed helm ${\bar{H}}_n$, and present a new way of prime cordial labeling of $P^2_n$. Finally we make a correction of the proof of Theorem 2.5 in [12].
In this paper, we consider a general number system with a base m in order to determine if a positive integer x is prime. We show that the base m providing the most efficient test is the primorial pn# when pn# < x < pn+1# and establish a necessary and sufficient condition for x in between consecutive primorials to be determined as a prime number.
Let (Fn)n≥0 be the Fibonacci sequence and p be a prime number. For 1≤k≤m, the Fibonomial coefficient is defined as $$\[\array{m\\k}\]_F=\frac{F_{m-k+1}{\ldots}{F_{m-1}F_m}}{{F_1}{\ldots}{F_k}}$$ and $\[\array{m\\k}\]_F=0$ whan k>m. Let a and n be positive integers. In this paper, we find the conditions of prime number p which divides Fibonomial coefficient $\[\array{P^{a+n}\\{p^a}}\]_F$. Furthermore, we also find the conditions of p when $\[\array{P^{a+n}\\{p^a}}\]_F$ is not divisible by p.
비대칭 암호 알고리즘을 설계하는 데 있어서 매우 큰 소수를 구하는 것은 필수적이다. 그러나 지금까지는 결정론적인(deterministic) 큰 소수를 발견하기는 매우 어려웠기 때문에, 일반적으로 확률적으로 소수일 가능성이 높은 의사소수(psedoprime)를 비대칭 암호 알고리즘에서 사용하였다. 이 논문에서 결정론적인 소수 생성 방법을 제안하며, 제안된 방법에 의해 생성된 소수는 증명이 가능한 100% 정확한 소수이다. 또한 이 방법에 의해 생성된 소수는 신뢰성, 비도, 원시원소(primitive element)생성 능력 등을 보장한다.
PONRAJ, R.;SINGH, RAJPAL;KALA, R.;NARAYANAN, S. SATHISH
Journal of applied mathematics & informatics
/
제34권3_4호
/
pp.227-237
/
2016
In this paper we introduce a new graph labeling called k-prime cordial labeling. Let G be a (p, q) graph and 2 ≤ p ≤ k. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called a k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with a k-prime cordial labeling is called a k-prime cordial graph. In this paper we investigate the k-prime cordial labeling behavior of a star and we have proved that every graph is a subgraph of a k-prime cordial graph. Also we investigate the 3-prime cordial labeling behavior of path, cycle, complete graph, wheel, comb and some more standard graphs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.