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PRIMALITY BETWEEN CONSECUTIVE PRIMORIALS

Kiyuob Jung and Eunkyung Ko

Abstract. In this paper, we consider a general number system with a

base m in order to determine if a positive integer x is prime. We show

that the base m providing the most efficient test is the primorial pn] when
pn] < x < pn+1] and establish a necessary and sufficient condition for x

in between consecutive primorials to be determined as a prime number.

1. Introduction

Investigation of prime numbers has been a fundamental research field in
mathematics in general, and cryptography especially. It has been studied how
to determine if a number is prime for a long time and improved efficient cal-
culation algorithm in practice. In the field of determination of prime numbers,
the well known test, the sieve of Eratosthenes, is the method dividing n by
every number m ≤

√
n. If any m divides n, then n is composite. However, this

test is inefficient since it needs huge steps to determine if n is prime. Since
then, many results have been established to improve efficiency; Fermat’s Little
Theorem, Pocklington theorem in [3], AKS primality test in [1] and Elliptic
Curve Primality Proving (ECPP) in [2].

In this paper, we suggest a primality test for general purpose, which means
that our test does not depend on special numbers such as Fermat numbers and
Mersenne numbers. In particular, we prove a necessary and sufficient condition
for x living in consecutive primorials to be determined as a prime number.

Let x be a natural number. If the units digit of x is one of 0, 2, 4, 5, 6,
or 8, then x is composite since 2 or 5 divides x. For this reason, when we
determine whether x is prime from only the units digit of x, it is enough to
deal with x whose the units digit is one of 1, 3, 7 and 9. In other words, we
do not have to consider 60% of numbers in the decimal system determining if
x is prime. Furthermore, if we take the number system with a general base,
we can consider less numbers when finding prime numbers in a way to remove
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composite numbers. Suppose that we try to find prime numbers by checking
only the units digit of given numbers. For example, we take the number system
with base 36. The probability of composite numbers in this number system is
about 66.67% (details in Theorem 2.1), which is higher than the probability of
composite numbers 60% in the decimal system. Hence, choosing the optimal
base which has higher probability of becoming a composite number is important
to find prime numbers in the sense of efficiency. Thus, we focus on finding the
optimal base and establish a sufficient and necessary condition determining
whether an arbitrary number is a prime number by using the optimal base.

Let n be a positive integer. Denote the n-th prime number as pn. The
primorial of pn, denoted by pn], is defined as the product of the first n primes:

pn] =

n∏
k=1

pk.

Here we state our main results:

Theorem 1.1. There exists at least one prime p such that pn] < p < pn+1]
for each n ∈ N.

Theorem 1.2. Let x be a positive integer, where pn] < x < pn+1] with a fixed
positive integer n > 1. Then x is a prime number if and only if the following
conditions hold:

(i) pn] and r are relatively prime, where r is the remainder when x is
divided by pn].

(ii) p - x for all prime p, where pn+1 ≤ p <
√
pn+1].

Example 1.3. We determine whether 74173 and 77291 are prime numbers
or not. Note that both are in between p6] and p7]. The remainder when
p6] = 30030 divides 74173 and 77291 are 14113 and 17231, respectively. As
gcd(30030, 14113) 6= 1, we can see 74173 is composite. However, since 30030
and 17231 are relatively prime, we cannot determine whether 77291 is a prime
number from Theorem 1.2(i) only. This case can be handled by Theorem 1.2
(ii). Observe that p7 = 17 ≤ p7, p8, . . . , p127 <

√
p7] = 714.49 . . .. Since 77291

is not divided by p7 = 17, 19, . . . , and p127 = 709, we conclude that 77291 is a
prime number from Theorem 1.2(ii).

Remark 1.4. The existence of a prime number in between pn] and pn+1] is
established in Theorem 1.1, and we can find all prime numbers in between pn]
and pn+1] from Theorem 1.2. Hence, if the largest prime number (:= plast)
found up to now is pn+1, we can guarantee the existence of the prime number
(= plast+1), which is larger than plast, in between plast and pn+1].

Our work is organized as follows: In Section 2, we show that composite
numbers can be removed by checking only the units digit in a general number
system. We also explain why pn] is the optimal base. In Section 3, we present
the proof of Theorem 1.1 and Theorem 1.2 and suggest an alternative method
of Theorem 1.2 in the calculation view point.
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2. Preliminaries

2.1. Units digits and composite numbers

A natural number x can be expressed uniquely in the form

(1) x = rnm
n + rn−1m

n−1 + · · ·+ r1m+ r0,

where m,n ∈ N, m > 1, ri ∈ Zm, 0 ≤ i ≤ n and rn 6= 0. Conventionally, we
denote

(2) x = rnrn−1 · · · r1r0(m).

In the case whenm=10, we omit 10 and write the number as x=rnrn−1 · · · r1r0,
which is the usual expression in the decimal system. Here, we use a notation
x(m,0) for the units digit of x in the number system with a base m, which means
that x(m,0) := r0 in (2). Now it is easy to see that for all x,m ∈ N with m > 1,
the remainder when x is divided by m is equal to x(m,0).

In the following theorem we discuss the relation between a composite number
and the units digit in the number system with a base m.

Theorem 2.1. Let x and m be positive integers such that x > m > 1. If x(m,0)

and m are not relatively prime, then x is composite.

Proof. Let x and m be positive integers with gcd(x,m) 6= 1. Note that 0 ≤
x(m,0) < m. Then there exists a positive integer g > 1 such that x(m,0) = ag
and m = bg for some a, b ∈ N. From (1), we find that there exist n ∈ N, ri ∈
Zm, 0 ≤ i ≤ n and rn 6= 0 such that

x = rnm
n + rn−1m

n−1 + · · ·+ r1m+ x(m,0)

= rn(bg)n + rn−1(bg)n−1 + · · ·+ r1bg + ag

= (rnb
ngn−1 + rn−1b

n−1gn−2 + · · ·+ r1b+ a)g,

which implies that x is composite. �

By checking out the units digit of x in the number system with base m, we
can recognize that x is composite.

Example 2.2. Let us determine whether 7481271 is a prime number or not.
In the decimal system, there is no way to recognize that 7481271 is composite
by only checking the units digit 1. However, if we change the number system
from decimal to hexadecimal one, we can see that 7481271 is composite by
observing 7481271 = 424203303(6) and applying to Theorem 2.1.

2.2. The optimal base in number system

In this section, we shall answer what is the optimal base in a number system
to guarantee some efficiency we presented in the introduction. To state our
results, we first introduce two well-known inequalities concerning primorials in
[4] and [5], respectively;

(3) pn+1 ≤ pn]− 1 ∀n ≥ 2
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and

(4) p2
n+1 < pn] ∀n ≥ 4,

where the latter inequality is called Bonse’s inequality. In [4], Bertrand’s pos-
tulate states that there exists a prime number p such that n < p ≤ 2n for each
n ∈ N. We also employ the usual notation for Euler’s function φ(m) and the
radical rad(m) for m ∈ N, defined by

φ(m) = m
∏
p|m

(
1− 1

p

)
, rad(m) =

∏
p|m

p,

where p is a prime number. From a simple calculation, it is easy to verify that

(5)
φ(m)

m
=
φ(rad(m))

rad(m)
.

Definition. For a positive integer m > 1, we define

ρ(m) = 1− φ(m)

m
.

Remark 2.3. The function ρ(m) represents the probability that an arbitrary
natural number x > m can be determined as composite by checking out the
units digit x(m,0). For example, when considering the number system with
a base 36, we see that ρ(36) = 0.66 . . . , which implies the probability that
x(36,0) and 36 are not relatively prime. This means that x has the probability
ρ(36) = 0.66 . . . to be determined as a composite number by checking the units
digit in the number system with base 36. Hence when we try to find prime
numbers by removing composite numbers first and then applying to Theorem
1.2, if we take the value m with the higher ρ(m) than ρ(10), we are able to deal
with less numbers in order to apply to Theorem 1.2. In this sense, we will say
that the value m with the higher ρ(m) has the better efficiency.

In Figure 1 the horizontal red line is the value ρ(10) = 0.6 in the decimal
system, and it shows that there exists a base m with the better efficiency than
m = 10 (details in Corollary 2.6).

Figure 1. ρ(m) from m = 2 to m = 216
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Now, we find the optimal base m ≥ p2] which has the highest ρ(m) when we
want to determine whether a positive integer x > p2] is prime or not. Notice
that there exists a positive integer n > 1 such that pn] < x < pn+1]. Here we
claim that pn] is the optimal base m.

Proposition 2.4. Let n be a positive integer. Then ρ(m) ≤ ρ(pn]), ∀ 1 <
m < pn+1].

Proof. Let the standard decomposition of m be given as

(6) m = pe1a1p
e2
a2 · · · p

eu
au ,

where pai < paj if i < j and ei ∈ N, ∀1 ≤ i ≤ u. Notice that u ≤ n as
1 < m < pn+1]. We first claim that

(7)

n∏
i=1

(
1− 1

pi

)
≤

u∏
j=1

(
1− 1

paj

)
,

where paj , u are as in (6). It is clear that (7) holds when p1 ≤ paj ≤ pn,
∀1 ≤ j ≤ u. Hence we consider the case when there exists w ∈ N such that
paw > pn, where 1 ≤ w ≤ u. Notice that paj > pn for all w ≤ j ≤ u. Let

I := {k ∈ N : ∀1 ≤ j ≤ w − 1, pk 6= paj and pk ≤ pn}
and

Ic := {1, 2, . . . , n} \ I.
Note that |I| = n−w+ 1 and |I| ≥ u−w+ 1 as u ≤ n. Also, we find that for
each w ≤ j ≤ u, paj > pk for all k ∈ I. Thus, it follows that∏

k∈I

(
1− 1

pk

)
≤

u∏
j=w

(
1− 1

paj

)
.

Therefore, we find that

u∏
j=1

(
1− 1

paj

)
=

w−1∏
h=1

(
1− 1

pah

) u∏
j=w

(
1− 1

paj

)

≥
w−1∏
h=1

(
1− 1

pah

)∏
k∈I

(
1− 1

pk

)
=
∏
i∈Ic

(
1− 1

pi

)∏
k∈I

(
1− 1

pk

)

=

n∏
i=1

(
1− 1

pi

)
,

which implies that (7) holds. Thanks to (5) and (7), we have that

φ(pn])

pn]
=
φ(p1p2 · · · pn)

p1p2 · · · pn
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=

n∏
i=1

(
1− 1

pi

)

≤
u∏
j=1

(
1− 1

paj

)
=
φ(pa1pa2 · · · pau)

pa1pa2 · · · pau

=
φ(m)

m
,

which concludes that

1− φ(m)

m
= ρ(m) ≤ ρ(pn]) = 1− φ(pn])

pn]

for all 1 < m < pn+1].
�

Remark 2.5. As the condition x > m in Theorem 2.1, the optimal base m has
to be in between 1 and pn+1].

Corollary 2.6. ∀n ≥ 2, ρ(10) < ρ(pn]).

Proof. First, for n = 2, one can find that ρ(10) = 0.6 < 0.66 . . . = ρ(p2]).
Second, Proposition 2.4 implies Corollary 2.6 for all n ≥ 3. Consequently, the
proof is complete. �

3. Determination of prime numbers

3.1. Proofs of the main theorems

Proof of Theorem 1.1. Let n be a positive integer. First, for n = 1, there exists
the prime 3 in between p1] and p2]. Second, assume n ≥ 2. Clearly, 2 < pn+1.
By multiplying both sides by pn], we have pn] <

1
2pn+1]. Thanks to Bertrand’s

postulate, there exists at least one prime p such that 1
2pn+1] < p < pn+1].

Observing that

pn] ≤
1

2
pn+1] < p < pn+1],

the proof is complete. �

Proof of Theorem 1.2. Let n > 1 be a positive integer. One can check that
Theorem 1.2 holds for n = 2 and n = 3. Now we prove Theorem 1.2 for n ≥ 4.
Let x be a positive integer with pn] < x < pn+1]. Let r be the remainder when
x is divided by pn]. Then x = q · pn]+ r for some q ∈ N.

First, assume that x is a prime number. To prove (i), suppose to the contrary
that gcd(pn], r) 6= 1. Then there exists a positive integer g > 1 such that r = ag
and pn] = bg for some positive integers a, b. Since

x = q · pn]+ r = qbg + ag = (qb+ a)g,
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x is composite, which is a contradiction to the hypothesis, as required.
Now let p be a prime number, where pn+1 ≤ p <

√
pn+1]. The inequality

pn+1 ≤ pn] − 1 in (3) yields pn] · pn+1 < pn] · pn], so that
√
pn+1] < pn]

as pn] · pn+1 = pn+1]. Also, Bonse’s inequality in (4) provides the inequality

pn+1 <
√
pn+1]. Thus, (ii) is held since p < x implies that p - x.

Conversely, assume gcd(pn], r) = 1 and p - x for all prime p, where pn+1 ≤
p < pn]. Suppose to the contrary that x is composite. We show that this
assumption leads to a contradiction to (ii). Let x = pe1a1p

e2
a2 · · · p

eu
au , where ei ≥ 1

∀1 ≤ i ≤ u and different prime numbers pa1 , pa2 , . . ., pau . Then, pai <
√
pn+1]

for all 1 ≤ i ≤ u since the composite number x satisfies that x < pn+1]. From
(i), observe that

gcd(r, pn]) = gcd(x, pn]) = gcd
(
pe1a1p

e2
a2 · · · p

eu
au , p1p2 · · · pn

)
= 1.

Hence, pn+1 ≤ pai for all 1 ≤ i ≤ u. Therefore, we obtain that pn+1 ≤ pai ≤√
pn+1] ∀1 ≤ i ≤ u, which contradicts to (ii). Consequently, we conclude that

x is prime, as required. �

3.2. Determination algorithm; removal of composite numbers

In summary, the determination of prime number is as follows. Let us de-
termine whether x ∈ N is a prime number, where pn] < x < pn+1] for each
positive integer n > 1.

(D1) If the units digit of x is one of 0, 2, 4, 5, 6, 8, then x is composite. Oth-
erwise go to (D2).

(D2) Calculate the remainder r when x is divided by pn].
(D3) If there exists a prime pi such that 2 ≤ i ≤ n and pi | r, then x is

composite. Otherwise go to (D4).
(D4) If there does not exist a prime p which divides x, where pn+1 ≤ p ≤√

pn+1], then x is prime. Otherwise x is composite.

In the view of calculation, it is not easy to perform step (D4). Hence we suggest
an alternative method, which is that we remove all composite numbers by using
the condition pn+1 ≤ p ≤

√
pn+1]. First, we consider the set of all numbers

which is not determined as a composite number after applying to Theorem 1.2
(i). We define

Ψ(n) :=
{
x ∈ N : pn] < x < pn+1] and gcd

(
x(pn],0), pn]

)
= 1
}
.

Note that elements of Ψ(n) can be either prime numbers or composite numbers.
Now, we investigate the property of the composite numbers in Ψ(n). Let y

be a positive integer and its factorization be pe1a1p
e2
a2 · · · p

en
an with different prime

numbers pa1 , pa2 , . . ., pan and positive integer ei ≥ 1 ∀1 ≤ i ≤ n. We define the
function Ω(y) as the number of prime divisors of y counted with multiplicity:

Ω(y) :=

n∑
i=1

ei.



1384 K. JUNG AND E. KO

Property 3.1. Let x ∈ Ψ(n) be a composite number with a fixed n ∈ N. Then
2 ≤ Ω(x) ≤ N , where N is the largest positive integer such that pNn+1 < pn+1].

Proof. Clearly, as 2 ≤ Ω(x) for all n ∈ N, it is enough to show Ω(x) ≤ N . It
is obvious that there exists the largest N ∈ N such that pNn+1 < pn+1] for each

n ∈ N. Let pn+α be the largest prime number such that pn+α <
√
pn+1]. Since

x is composite in Ψ(n), x can be written by

x = pe1n+1p
e2
n+2 · · · p

eα
n+α,

where ei ≥ 0 for all 1 ≤ i ≤ α. Note that Ω(x) = e1 + e2 + · · · + eα. Suppose
to the contrary that Ω(x) > N . Then, we see that

pNn+1 < p
Ω(x)
n+1 = pe1n+1p

e2
n+1 · · · p

eα
n+1 < pe1n+1p

e2
n+2 · · · p

eα
n+α = x < pn+1],

which contradicts to that N is the largest positive integer such that pNn+1 <
pn+1]. Therefore, the composite number x ∈ Ψ(n) implies Ω(x) ≤ N . �

Example 3.2. Here are all the elements of Ψ(3) and its factorization in the
following table:

Table 1. The elements of Ψ(3) and its standard decomposition

Prime numbers Composite numbers
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109,
113, 127, 131, 137, 139, 149, 151, 157,
163, 167, 173, 179, 181, 191, 193, 197,
199

49 = 7 · 7, 77 = 7 · 11, 91 = 7 · 13,
119 = 7·17, 121 = 11·11, 133 = 7·19,
143 = 11·13, 161 = 7·23, 169 = 13·13,
187 = 11·17, 203 = 7·29, 209 = 11·19

Notice that the prime numbers 7, 11, 13, 17, 19, 23, and 29 are the factors of the
composite numbers in Table 1. In particular, one can find that p4 ≤ 7, 11, 13 <√
p4] = 14.49 . . .. Theorem 1.2(ii) shows that all composite numbers in Ψ(3) is

divided by at least one of 7, 11, and 13.

Finally, we introduce the alternative for (D4) aforementioned. In order to
obtain all prime numbers in Ψ(n), we proceed the following steps.

(D’4) Calculate the largest positive integer N such that pNn+1 < pn+1].
(D’5) For each 2 ≤ ω ≤ N , construct Ψ(n, ω) := {x ∈ Ψ(n) : Ω(x) = ω}.
(D’6) Calculate that Ψ(n) \ {Ψ(n, 2) ∪Ψ(n, 3) ∪ · · · ∪Ψ(n,N)}.

Consequently, we consist of only prime numbers in between pn] and pn+1].
Notice that elements of Ψ(n, ω) are composite possessing w prime factors.

Example 3.3. Consider all elements of Ψ(3) at Table 1. The largest positive
integer N satisfying 7N < 210 is 2. Observing that

Ψ(3, 2) = {49, 77, 91, 119, 121, 133, 143, 161, 169, 187, 203, 209},
we obtain all prime numbers in between 30 and 210 by excluding all elements
of Ψ(3, 2) from Ψ(3).
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