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A CLASS OF NEW NEAR-PERFECT NUMBERS

Yanbin Li and Qunying Liao

Abstract. Let α be a positive integer, and let p1, p2 be two distinct
prime numbers with p1 < p2. By using elementary methods, we give two
equivalent conditions of all even near-perfect numbers in the form 2αp1p2
and 2αp21p2, and obtain a lot of new near-perfect numbers which involve
some special kinds of prime number pairs. One kind is exactly the new
Mersenne conjecture’s prime number pair. Another kind has the form

p1 = 2α+1
− 1 and p2 =

p
2
1+p1+1

3
, where the former is a Mersenne prime

and the latter’s behavior is very much like a Fermat number.

1. Introduction

Definition 1.1. Let n be a positive integer. Set D = {d : d | n, 1 6 d 6 n}
and σ(n) =

∑

d∈D d.

(1) If σ(n) = 2n, then n is called a perfect number.
(2) (Sierpinski) If there exists some S ⊆ D − {n} such that n =

∑

d∈S d,
then n is called a pseudoperfect number.

(3) (Shevelev) If there exists some d ∈ D − {n} such that σ(n) = 2n+ d,
then n is called a near-perfect number with the redundant divisor d.

(4) (Pollack & Shevelev) If there exist some r, 0 6 r 6 k and S ⊆ D−{n}
with |S| = r, such that σ(n) = 2n+

∑

d∈S d, then n is called a k-near-
perfect number with the redundant divisors set S.

By Definition 1.1 above, it is easy to see that pseudoperfect numbers are
a generalization for perfect numbers, near-perfect numbers are special pseu-
doperfect numbers, and perfect numbers and near-perfect numbers constitute
1-near-perfect numbers.

People have been interested in perfect numbers for a long time. Euclid
and Euler determined all even perfect numbers, which are closely related to
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Mersenne primes. For odd perfect numbers, Euler obtained a necessary condi-
tion for the existence (see [5]). In recent years, there have been many papers for
odd perfect numbers having to do with the conjecture that there exists no odd
perfect numbers (see [2, 3, 4, 7, 12]). Until now, the conjecture has not been
proved. Therefore, people study other similar numbers, such as pseudoperfect
numbers, near-perfect numbers, k-near-perfect numbers and deficient-perfect
numbers, which are closely related to perfect numbers (see [8, 9, 10, 13]).

In 2012, based on the criterion for the existence of even perfect numbers,
Paul Pollack and Vladimir Shevelev obtained 3 classes of even near-perfect
numbers as follows (see [8]).

Proposition 1.2. Suppose that 2p − 1 is a Mersenne prime. Then n =
2p−1(2p − 1)2 is a near-perfect number with the redundant divisor 2p − 1.

Proposition 1.3. Let t and k be positive integers with t > k+1. Suppose that

2t− 2k − 1 is an odd prime number. Then n = 2t−1(2t − 2k − 1) is near-perfect
with the redundant divisor 2k.

Proposition 1.4. Let α be a positive integer and let p be a prime number.

Suppose that m is an even perfect number and 2p−1 ‖ m. Then n = 2αm is

near-perfect if and only if α = 1 or α = p.

It is easy to see that the near-perfect numbers in Proposition 1.2–1.4 are in
the form 2αpβ, where α, β > 1 and p is an odd prime number. Noting that
40 = 23 · 5 which isn’t in Propositions 1.2–1.4 is also a near-perfect number
with the redundant divisor 10, Chen and Ren improved the above results by
proving the following proposition in [9].

Proposition 1.5. Suppose that n has exactly two distinct prime divisors. Then

n is near-perfect if and only if n = 40 or n is given by one of Propositions 1.2–
1.4.

Moreover, for near-perfect numbers with at least three distinct prime divi-
sors, there is the following conjecture in [9].

Conjecture 1.6. For any k > 3, there exists only finitely many near-perfect

numbers with exactly k distinct prime divisors.

In fact, for the generalized case, let αi be positive integers and let pi be
distinct primes, where i = 1, 2, . . . , r. Suppose that n = pα1

1 · · · pαr
r is near-

perfect with the redundant divisor d, namely, σ(n) = 2n+d. Note that for any
i = 1, 2, . . . , r,

σ(pαi

i ) = pαi

i + pαi−1
i + · · ·+ 1, gcd

(

pαi

i , σ(pαi

i )
)

= 1,

and so

σ(n) =
∑

d|n

d =
r
∏

i=1

αi
∑

j=0

pji =
r
∏

i=1

σ(pαi

i ) = σ(pαi

i )σ(
n

pαi

i

).

Therefore we have the following lemma.
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Lemma 1.7. The assumptions are as the above. Then for any i = 1, 2, . . . , r,
we have pi | σ(n/p

αi

i ) if pi | d, or pi | (σ(n/p
αi

i )− d) if pi ∤ d.

In particular, for an even near-perfect number n, from Lemma 1.7, we can
get

Lemma 1.8. Let r, αi be positive integers, and let pi be distinct primes (1 6

i 6 r). Suppose that n = 2α0pα1

1 · · · pαr
r is an even near-perfect number with the

redundant divisor d. Then there exists some i with 1 6 i 6 r, such that αi is

odd if and only if 2 | d.

Proof. From σ(n/2α0) =
∏r

i=1

∑αi

j=0 p
j
i and all pi (1 6 i 6 r) are odd primes,

we know that there exists some i ∈ {1, . . . , r} such that αi is odd if and only if
2 | σ(n/2α0).

On the one hand, from 2 | d and Lemma 1.7, we can get 2 | σ(n/2α0), which
means that there exists some i with 1 6 i 6 r such that αi is odd.

On the other hand, suppose that there exists some i with 1 6 i 6 r such
that αi is odd, then 2 | σ(n/2α0). In this case, if 2 ∤ d, then by Lemma 1.7
we have 2 |

(

σ(n/2α0) − d
)

. Thus from 2 | σ(n/2α0), we have 2 | d, which is a
contradiction.

Thus we complete the proof of Lemma 1.8. �

Beyond that, in [8], the authors generalized near-perfect numbers to k-near-
perfect numbers and proved the following proposition.

Proposition 1.9. Let k > 2 and α + 1 > r1 > r2 > · · · > rk > 1. Suppose

that p = 2α+1 − 2r1 − · · · − 2rk − 1 is an odd prime number. Then n = 2αp is

a k-near-perfect number with k redundant divisors 2r1 , . . . , 2rk.

In fact, some k-near-perfect numbers in Proposition 1.9 are also near-perfect.
Using Proposition 1.5, one can deduce the following conclusion.

Corollary 1.10. Let k > 2 and α+ 1 > r1 > r2 > · · · > rk > 1. Suppose that

p = 2α+1− 2r1 −· · ·− 2rk − 1 is an odd prime number. Then the k-near-perfect
number n = 2αp is also near-perfect if and only if one of the following is true.

(1) k is a prime number, α = 2k − 1 and ri = 2k − i (1 6 i 6 k).
(2) n = 40.

Proof. From the definition of near-perfect numbers, the sufficiency is immedi-
ate.

Now we prove the necessity. Suppose that n = 2α(2α+1− 2r1 −· · ·− 2rk − 1)
is near-perfect, then from Proposition 1.5, there exists some α0, such that
0 < α0 6 α, and

(I) 2α+1 − 2r1 − · · · − 2rk − 1 = 2α+1 − 2α0 − 1;

or there exists some prime q, such that α = 2q − 1 and

(II) 2α+1 − 2r1 − · · · − 2rk − 1 = 2q − 1;
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or α = 3 and

(III) 2α+1 − 2r1 − · · · − 2rk − 1 = 5.

From (I), we know that

2α0−rk = 2r1−rk + · · ·+ 2rk−1−rk + 1.

The left side is even. From r1 > r2 > · · · > rk we know that the right side is
odd. This is a contradiction.

From (II), we have

2q−rk = 22q−rk − 2r1−rk − · · · − 2rk−1−rk − 1 > 0,

thus q > rk. From 2q = α+1 > r1 > r2 > · · · > rk we know that the right side
is odd, and so q = rk. Hence

1 = 2q−1 − 2r1−q−1 − · · · − 2rk−1−q−1.

Now from rk−1 > rk + 1 = q + 1, the left side of the above equation is odd,
and then rk−1 = q+1. Thus we can get rk−2 = q+2, . . . , r1 = q+ k− 1. Then
taking 2q = α+1, rk = q, rk−1 = q+1, . . ., r1 = q+ k− 1 to the equation (II),
we have

22q − 2q+k−1 − · · · − 2q+2 − 2q+1 − 2q = 2q,

i.e.,

22q − 2q(2k − 1) = 2q,

thus k = q, ri = 2q − i (1 6 i 6 k).
From (III), we have

23 − 2r1−1 − · · · − 2rk−1 = 3,

thus rk = 1, and

2r1−1 + · · ·+ 2rk−1−1 = 4.

Note that r1 > r2 > · · · > rk, therefore k − 1 = 1, r1 = 3. In this case n = 40.
Thus we complete the proof of Corollary 1.10. �

In the present paper, by Lemmas 1.7–1.8, we give two equivalent conditions
of all even near-perfect numbers in the form 2αp1p2 and 2αp21p2 (p1 < p2)
(Theorem 2.1 and Theorem 3.1). These near-perfect numbers involve some
special kinds of prime number pairs. One kind is exactly the new Mersenne
conjecture’s prime number pair. Another kind has the form p1 = 2α+1 − 1 and

p2 =
p2
1+p1+1

3 , where the former is a Mersenne prime and the latter’s behavior
is very much like a Fermat number.



A CLASS OF NEW NEAR-PERFECT NUMBERS 755

2. Near-perfect numbers in the form 2α
p1p2

Suppose that n = 2αp1p2 is near-perfect, where α > 1, and both p1 and p2
are odd primes with p1 < p2. From Lemma 1.8, taking r = 2 and α1 = α2 = 1,
we have that the redundant divisor d is even. Hence d = 2β, 2βp1, 2βp2
(1 6 β 6 α), or 2βp1p2 (1 6 β 6 α − 1). Thus we obtain an equivalent
condition of all even near-perfect numbers in the form 2αp1p2. In fact we have
the following result.

Theorem 2.1. Let α be a positive integer. Suppose that both p1 and p2 are

odd primes with p1 < p2. Then n = 2αp1p2 is near-perfect if and only if one of

the following conditions is true.

(1) p1 = 2α+1−1+k
2β+1−k

, where k = 2α+1−1
p2

and 1 6 β 6 α − 1. In this case, the

redundant divisor is 2βp1p2.

(2) p1 = 2α+1 − 1 + 2α−2β−1

k
, where k is determined by the equation p2 =

(2α+1− 1)(2k+1)− 2β, 1 6 β 6 α. In this case, the redundant divisor is 2βp1.

(3) p2 = 2α+1 − 1 + 22α+1−2α−2β−1

k
, where k = p1−(2α+1−1)

2 and 1 6 β 6 α.

In this case, the redundant divisor is 2β.

Proof. We first prove the sufficiency.
(1) From the assumption we know that

(2β + 1)p1 = (2α+1 − 1) + k + p1k, 2α+1 − 1 = p2k.

Note that n = 2αp1p2, hence

σ(n)− 2n = (2α+1 − 1)(p1 + p2 + 1)− p1p2

= (2α+1 − 1)
2β + 1

k
p1 − p1

2α+1 − 1

k

= 2βp1p2.

Note that 1 6 β 6 α − 1, thus 2βp1p2 | n and 2βp1p2 6= n. Therefore from
the definition of the near-perfect number, n = 2αp1p2 is near-perfect with the
redundant divisor 2βp1p2.

The sufficiency proofs of (2) and (3) are similar.
Thus we complete the proof of the sufficiency.
Now we prove the necessity. Suppose that n = 2αp1p2 is near-perfect with

the redundant divisor d.
First, we can conclude that d 6= 2βp2 (1 6 β 6 α). Otherwise, from d = 2βp2

and Lemma 1.7, we have

p2 | σ(2αp1) = (2α+1 − 1)(p1 + 1).

Note that p1 < p2, and then gcd (p2, p1 + 1) = 1, thus

p2 | (2α+1 − 1).

Set 2α+1 − 1 = kp2, then

2βp2 = d = σ(n)− 2n
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= (2α+1 − 1)(p1 + 1)(p2 + 1)− 2α+1p1p2

= kp2(p1 + 1)(p2 + 1)− (kp2 + 1)p1p2

= p2[2
α+1 − 1 + (k − 1)(p1 + 1) + 1].

Thus
2β = 2α+1 − 1 + (k − 1)(p1 + 1) + 1.

But from 1 6 β 6 α, we know that

2α+1 − 1 + (k − 1)(p1 + 1) + 1 > 2α+1 > 2β,

which is a contradiction.
Therefore the redundant divisor d must be in the form

2β , 2βp1 (1 6 β 6 α) or 2βp1p2 (1 6 β 6 α− 1).

Now we prove the necessity of Theorem 2.1 according to the form of the
redundant divisor d.

(1) Suppose that d = 2βp1p2 (1 6 β 6 α− 1), then from Lemma 1.7,

p2 | σ(2αp1) = (2α+1 − 1)(p1 + 1).

Note that gcd (p2, p1 + 1) = 1, so

p2 | (2α+1 − 1).

Set 2α+1 − 1 = kp2, then

2βp1p2 = d = σ(n)− 2n

= kp2(p1 + 1)(p2 + 1)− (kp2 + 1)p1p2,

namely,
(2β + 1)p1 = k(p1 + p2 + 1).

Therefore

p1 =
2α+1 − 1 + k

2β + 1− k
.

Thus we complete the proof of (1).
(2) Suppose that d = 2βp1 (1 6 β 6 α), then from Lemma 1.7 we have

p1 | σ(2αp2) = (2α+1 − 1)(p2 + 1),

thus

p1 | (2α+1 − 1), or p1 | (p2 + 1).

If p1 | (2α+1 − 1), we can set 2α+1 − 1 = kp1, then

2βp1 = d = σ(n) − 2n

= kp1(p1 + 1)(p2 + 1)− (kp1 + 1)p1p2

= p1[2
α+1 + (k − 1)(p2 + 1)],

namely,
2β = 2α+1 + (k − 1)(p2 + 1).
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Note that 1 6 β 6 α, hence

2α+1 + (k − 1)(p2 + 1) > 2α+1 > 2β,

which is a contradiction.
Therefore p1 ∤ (2α+1−1), and so we must have p1 | (p2+1). Set p2 = 2kp1−1,

then from

2βp1 = d = σ(n)− 2n

= (2α+1 − 1)(p1 + 1)2kp1 − 2α+1p1(2kp1 − 1)

= 2p1[k(2
α+1 − 1− p1) + 2α],

we can get

p1 = 2α+1 − 1 +
2α − 2β−1

k
.

Thus we complete the proof of (2).
(3) Suppose that d = 2β (1 6 β 6 α), then p2 ∤ d. And so from Lemma 1.7

we have

p2 |
(

σ(2αp1)− d
)

= (2α+1 − 1)(p1 + 1)− 2β.

Set (2α+1 − 1)(p1 + 1)− 2β = 2kp2, i.e.,

(2.1) 2kp2 + 2β = (2α+1 − 1)(p1 + 1).

Then

2β = d = σ(n)− 2n

= (2kp2 + 2β)(p2 + 1)− 2α+1p1p2

= p2[2k(p2 + 1) + 2β − 2α+1p1] + 2β,

hence

2k(p2 + 1) + 2β − 2α+1p1 = 0.

And then by (2.1), we have

p1 = 2α+1 − 1 + 2k, p2 = 2α+1 − 1 +
22α+1 − 2α − 2β−1

k
.

Thus we complete the proof of (3). �

By taking α = 2β−5, k = 2β−2+1 in (1) of Theorem 2.1, and by supposing

that both p1 = 2β−2+1
3 and p2 = 2β−2− 1 are odd primes, then one can get the

near-perfect number 22β−5p1p2 with the redundant divisor 2βp1p2. The primes
p1 and p2 have the form of (3) and (2), respectively, in the following conjecture.

The New Mersenne Conjecture ([1]). If two of the following statements

about an odd prime number p are true, the third is also true.

(1) p = 2k ± 1 or p = 22k ± 3.
(2) 2p − 1 is a prime number.

(3) 2p+1
3 is a prime number.
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Searching by computer (Setting α = 2β − 5, k = 2β−2 + 1), for α 6 1000
one can get exactly 8 even near-perfect numbers which satisfy (1) of Theorem
2.1 as follows:

29 · 11 · 31, 213 · 43 · 127, 225 · 2 731 · 8 191, 233 · 43 691 · 131 071,

237 · 174 763 · 524 287, 261 · 715 827 883 · 2 147 483 647,

2121 · 768 614 336 404 564 651 · 2 305 843 009 213 693 951,

2253 · 56 713 727 820 156 410 577 229 101 238 628 035 243

· 170 141 183 460 469 231 731 687 303 715 884 105 727,

and the corresponding β = 7, 9, 15, 19, 21, 33, 63 and 129.
For the case (2) of Theorem 2.1, when 1 6 α 6 10, there exist exactly 38

even near-perfect numbers; when 11 6 α 6 20, there exist exactly 148 even
near-perfect numbers; when 21 6 α 6 25, there exist exactly 103 near-perfect
numbers. In particular, if 3 6 α 6 6, then there exist exactly 7 even near-
perfect numbers:

23 · 17 · 101, 23 · 19 · 37, 23 · 17 · 67, 25 · 67 · 937,

25 · 79 · 157, 25 · 71 · 283, 26 · 131 · 3 929,

and the corresponding β = 2, 3, 3, 3, 5, 5 and 3.
Finally, for the case (3) of Theorem 2.1, when α < 100 and k 6 100, there

exist exactly 248 even near-perfect numbers. In particular, if 3 6 α 6 5, then
there exist exactly 10 even near-perfect numbers:

23 · 17 · 131, 23 · 19 · 73, 24 · 43 · 113, 25 · 67 · 1 069, 25 · 103 · 163,

25 · 83 · 263, 25 · 79 · 313, 25 · 73 · 463, 25 · 71 · 563, 25 · 67 · 1 063,

and the corresponding β = 3, 3, 3, 3, 5, 5, 5, 5, 5 and 5.

3. Near-perfect numbers in the form 2α
p
2

1
p2

Suppose that n = 2αp21p2 is near-perfect, where α > 1, and both p1 and
p2 are odd primes with p1 < p2. From Lemma 1.8 the redundant divisor d
is even, and so d = 2β , 2βp1, 2βp21, 2βp2, 2βp1p2 (1 6 β 6 α) or 2βp21p2
(1 6 β 6 α − 1). Thus we obtain an equivalent condition of all even near-
perfect numbers in the form 2αp21p2 (p1 < p2). In fact we have:

Theorem 3.1. Let α be a positive integer. Suppose that both p1 and p2 are

odd primes with p1 < p2. Then n = 2αp21p2 is near-perfect if and only if one of

the following is true.

(1) There exist some β and γ, such that 1 6 β 6 α, 0 6 γ 6 2, and

the redundant divisor d = 2βpγ1 = (2α+1 − 1)(p21 + p1 + 1) − kp2, where k =
p21 − (2α+1 − 1)(p1 + 1).

(2) There exists some β, such that 1 6 β 6 α, and the redundant divisor

d = 2βp2 = (2α+1−1)(p2+1)−2kp1, where 2k = p1p2−(2α+1−1)(p1+p2+1).



A CLASS OF NEW NEAR-PERFECT NUMBERS 759

(3) There exist some β and γ, such that 1 6 β 6 α, 1 6 γ 6 2, and

2βpγ1 = (2α+1 − 1)(p1 + 1) + k − p21, where k =
(2α+1−1)(p2

1+p1+1)
p2

. In this case

the redundant divisor d = 2βpγ1p2.

Proof. First, we prove the sufficiency.
(1) From the assumption we have

kp2 + d+ k = (2α+1 − 1)(p21 + p1 + 1) + p21 − (2α+1 − 1)(p1 + 1)

= 2α+1p21.

Note that n = 2αp21p2, then

σ(n)− 2n = (2α+1 − 1)(p21 + p1 + 1)(p2 + 1)− 2α+1p21p2

= (kp2 + d)(p2 + 1)− 2α+1p21p2

= p2[k(p2 + 1) + d− 2α+1p21] + d

= d,

and d = 2βpγ1 (1 6 β 6 α, 0 6 γ 6 2), we can get d | n and d 6= n. Thus from
the definition we know that n = 2αp21p2 is near-perfect with the redundant
divisor d.

The sufficiency proofs of (2) and (3) are similar.
Now we prove the necessity. Suppose that n = 2αp21p2 is near-perfect with

the redundant divisor d.
(1) If d = 2βpγ1 (1 6 β 6 α, 0 6 γ 6 2), then p2 ∤ d. By Lemma 1.7 we have

p2 | (σ(2αp21)− d) = (2α+1 − 1)(p21 + p1 + 1)− d.

Set

(3.1) (2α+1 − 1)(p21 + p1 + 1)− d = kp2.

Note that n is near-perfect with the redundant divisor d, therefore

d = σ(n)− 2n

= [(2α+1 − 1)(p21 + p1 + 1)− d](p2 + 1) + d(p2 + 1)− 2α+1p21p2

= kp2(p2 + 1) + d(p2 + 1)− 2α+1p21p2

= p2[k(p2 + 1) + d− 2α+1p21] + d,

namely,
k(p2 + 1) + d− 2α+1p21 = 0,

thus
kp2 = 2α+1p21 − k − d.

By (3.1) we know that

2α+1p21 − k = (2α+1 − 1)(p21 + p1 + 1),

hence
k = p21 − (2α+1 − 1)(p1 + 1).



760 YANBIN LI AND QUNYING LIAO

Thus we complete the proof of (1).
(2) If d = 2βp2 (1 6 β 6 α), then p1 ∤ d. From Lemma 1.7 we have

p1 | (σ(2αp2)− d) = (2α+1 − 1)(p2 + 1)− 2βp2.

Set

(3.2) (2α+1 − 1)(p2 + 1)− 2βp2 = 2kp1,

i.e.,
2βp2 = (2α+1 − 1)(p2 + 1)− 2kp1.

Thus from

2βp2 = d

= σ(n)− 2n

= [(2α+1 − 1)(p2 + 1)− 2βp2](p
2
1 + p1 + 1) + 2βp2(p

2
1 + p1 + 1)

− 2α+1p21p2

= 2kp1(p
2
1 + p1 + 1) + 2βp2p1(p1 + 1)− 2α+1p21p2 + 2βp2

= p1[2k(p
2
1 + p1 + 1) + 2βp2(p1 + 1)− 2α+1p1p2] + 2βp2,

we know that

2k(p21 + p1 + 1) + 2βp2(p1 + 1)− 2α+1p1p2 = 0.

And then by (3.2),

[(2α+1 − 1)(p2 + 1)− 2βp2](p1 + 1) + 2k + 2βp2(p1 + 1)− 2α+1p1p2 = 0,

hence
(2α+1 − 1)(p2 + 1)(p1 + 1) + 2k − 2α+1p1p2 = 0.

Therefore
(2α+1 − 1)(p1 + p2 + 1) + 2k − p1p2 = 0,

namely,
2k = p1p2 − (2α+1 − 1)(p1 + p2 + 1).

Thus we complete the proof of (2).
(3) If d = 2βpγ1p2 (1 6 β 6 α, 1 6 γ 6 2), then p2 | d. From Lemma 1.7 we

have
p2 | σ(2αp21) = (2α+1 − 1)(p21 + p1 + 1).

Set

(3.3) (2α+1 − 1)(p21 + p1 + 1) = kp2.

Noting that

2βpγ1p2 = σ(n)− 2n

= kp2(p2 + 1)− 2α+1p21p2,

we have
k(p2 + 1)− 2α+1p21 = 2βpγ1 .
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Thus from (3.3) we know that

(2α+1 − 1)(p21 + p1 + 1) = 2α+1p21 − k + 2βpγ1 ,

namely,
2βpγ1 = (2α+1 − 1)(p1 + 1) + k − p21.

Thus we complete the proof of (3). �

Corollary 3.2. Let α be a positive integer, and let both p1 = 2α+1 − 1 and

p2 = p21 + p1 + 1 be odd primes. Then n = 2αp21p2 is near-perfect if and only if

n = 2 · 32 · 13.

Proof. From the definition of near-perfect numbers, the sufficiency is clear.
Now we prove the necessity. First, from Lemma 1.8, the redundant divisor

d of n must have the form

2βpγ1 (1 6 β 6 α, 0 6 γ 6 2), 2βp2 (1 6 β 6 α),

or
2βpγ1p2 (1 6 β 6 α, 1 6 γ 6 2).

If d = 2βpγ1 (1 6 β 6 α, 0 6 γ 6 2), then from (1) of Theorem 3.1 we have

d = 2βpγ1 = (2α+1 − 1)(p21 + p1 + 1)− kp2.

Note that p1 = 2α+1 − 1 and p2 = p21 + p1 + 1, i.e.,

2βpγ1 = p1p2 − kp2 = (p1 − k)p2,

thus p2 | 2βpγ1 , which is a contradiction to the fact that gcd (p2, 2p1) = 1.
If d = 2βp2 (1 6 β 6 α), then from (2) of Theorem 3.1 and the assumption,

we have

d = 2βp2 = (2α+1 − 1)(p2 + 1)− 2kp1 = p1(p2 + 1− 2k),

thus p1 | 2βp2, which is also a contradiction.
Therefore the redundant divisor d must have the form 2βpγ1p2 (1 6 β 6

α, 1 6 γ 6 2), namely, it satisfies (3) of Theorem 3.1. Thus we have

d = 2βpγ1p2 = [(2α+1 − 1)(p1 + 1) + k − p21]p2,

and
kp2 = (2α+1 − 1)(p21 + p1 + 1).

Note that p1 = 2α+1 − 1 and p2 = p21 + p1 + 1, so that

2βpγ1p2 = [p1(p1 + 1) + k − p21]p2 = (k + p1)p2, kp2 = p1p2,

i.e., k = p1 and 2βpγ1 = 2p1, which means that γ = β = 1, and therefore
d = 2p1p2.

On the other hand, since p1 = 2α+1 − 1 is an odd prime number, we have
α+ 1 is prime. Set q = α+ 1, then

p2 = p21 + p1 + 1 = (2q − 1)2 + 2q = 22q − 2q + 1

≡ (−1)2q − (−1)q + 1 (mod 3)
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≡ 2− (−1)q (mod 3).

If q is an odd prime number, then p2 ≡ 2 + 1 ≡ 0 (mod 3), and thus p2 = 3.
This is a contradiction to the assumption p2 = p21 + p1 + 1 > 3. Therefore
q = 2, i.e.,

α = 1, p1 = 3, p2 = 13,

which means that there exists a unique even near-perfect number n = 2 ·32 ·13,
of the desired form, and the redundant divisor is 2 · 3 · 13.

Thus we complete the proof of Corollary 3.2. �

In the case (1) of Theorem 3.1, by taking

α = 1, p1 = 5, p2 = 13, k = 7,

one can get a near-perfect number n = 2 · 52 · 13 with the redundant divisor
d = 2. Similarly, in (3) of Theorem 3.1, by taking

p1 = 2α+1 − 1, p2 =
p21 + p1 + 1

3
, k = 3(2α+1 − 1), β = 2, γ = 1,

when p1, p2 are prime, one can get the near-perfect number

n = 2α(2α+1 − 1)2 ·
22(α+1) − 2α+1 + 1

3
,

and the redundant divisor is

d = 22(2α+1 − 1) ·
22(α+1) − 2α+1 + 1

3
.

In particular, in (3) of Theorem 3.1, by taking q = α + 1 = 3, 5, 7, 13,

respectively, then both p1 = 2q − 1 and p2 = 22q−2q+1
3 are odd primes. Thus

one can get 4 near-perfect numbers as follows.

22 · 72 · 19, 24 · 312 · 331, 26 · 1272 · 5 419, 212 · 8 1912 · 22 366 891.

Furthermore, searching by computer, 260 · (261 − 1)2 · 2122−261+1
3 is near-

perfect satisfying the case (3) of Theorem 3.1. A natural question is if there
are any other near-perfect numbers in this form, namely, does there exist a pair

of primes in the form (p1 = 2α+1 − 1, p2 =
p2
1+p1+1

3 )?
It is easy to see that p1 must be a Mersenne prime. In fact, taking p1 as one

of the first twelve Mersenne primes (except the first one), we find that p2 has
no square factor (except 1). This is very much like Fermat numbers.
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