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Abstract. A graph G of order n has prime cordial labeling if its vertices can be assigned

the distinct labels 1, 2 · · · , n such that if each edge xy in G is assigned the label 1 in case

the labels of x and y are relatively prime and 0 otherwise, then the number of edges labeled

with 0 and the number of edges labeled with 1 differ by at most 1. In this paper, we give a

complete characterization of complete graphs which are prime cordial and we give a prime

cordial labeling of the closed helm H̄n, and present a new way of prime cordial labeling of

P 2
n . Finally we make a correction of the proof of Theorem 2.5 in [12].

1. Introduction

All graphs in this paper are finite, simple and undirected. We follow the basic
notation and terminology of graph theory as in [2].

The notion of prime labeling originated with Entringer and was introduced in a
paper by Tout, Dabboucy and Howalla [11]. A graph G of order n with vertex set
V (G) is said to have prime labeling if its vertices are labeled with distinct integers
1, 2, · · · , n such that for each edge xy the labels assigned to x and y are relatively
prime. Around 1980, Entringer conjectured that all trees have prime labeling.
So far, there has been a little progress towards proving this conjecture. Among
the classes of trees known to have prime labelings are: paths, stars, caterpillars,
complete binary trees, spiders (i.e., trees with one vertex of degree at least 3 and
with every other vertex has degree at most 2), olive trees (i.e., rooted trees consisting
of k branches such that the ith branch is a path of length i ) and all trees of order
up to 50. The notion of cordial labeling of graphs was introduced by Cahit [1]
in 1987. Sundaram, Ponraj and Somasundaram [10] have introduced the notion
of prime cordial labelings motivated by the prime and cordial labelings. A prime
cordial labeling of a graph G with vertex set V (G) is a bijection f from V (G) to
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{1, 2, · · ·n} where n = |V (G)| such that if each edge uv is assigned the label 1 if
gcd(f(u), f(v)) = 1 and 0 if gcd(f(u), f(v)) > 1, then the number of edges labeled
with 0 and the number of edges labeled with 1 differ at most by 1.

For i = 0, 1, let qi(G) denote the number of edge labeled i under a prime cordial
function f . In [10], Sundaram and others proved that the following graphs are prime
cordial: Cn if and only if n ≥ 6, Pn if and only if n ̸= 3 or 5 ; K1,n (n odd); the
graph obtained by subdividing each edge of K1,n if and only if n ̸= 3. They also
proved that if G is a prime cordial graph of even size, then the graph obtained by
identifying the central vertex of K1,n with the vertex of G labeled with 2 is prime
cordial, and if G is a prime cordial graph of odd size, then the graph obtained by
identifying the central vertex of K1,2n with the vertex of G labeled with 2 is prime
cordial. They further proved that Kn is not prime cordial for 4 ≤ n ≤ 181 and Km,n

is not prime cordial for a number of special cases of m and n. Vaidya and Shah
[13] proved that Wn is prime cordial if and only if n ≥ 8. See ([3]-[13]) for related
results. The reference [4] surveys the current state of knowledge for all variations
of graph labelings appearing in this paper.

A graph G of order n is prime if and only if G is isomorphic to a spanning sub-
graph of the graph Rn of order n with vertex set V (G) = {v1, v2, . . . vn} and whose
edge set is defined as E(Rn) = {vivj : gcd(i, j) = 1}. We call Rn the maximal prime
graph of order n and ρ(n) = |E(Rn)|, is the maximum number of edges in a prime

graph of order n. Seoud and Youssef [9] proved that ρ(n) = |E(Rn)| =
n∑

i=1

ϕ(i)− 1,

where ϕ is the Euler’s phi function. It follows that ρ(n) is the maximum number of
edges labeled 1 in a prime cordial graph of order n.

2. Main Results

In [10] Sundaram and others conjectured that

n∑
i=2

ϕ(i) ≥ 1

2

(
n

2

)
+ 1. The fol-

lowing is a proof of this conjecture.

Theorem 2.1. With the setting above, the following inequality holds

n∑
i=2

ϕ(i) ≥ 1

2

(
n

2

)
+ 1, for all n ≥ 3.

Proof. The case n = 3, 4 can be checked manually. So we assume that n ≥ 5.

We see that
∣∣∣{(i, j) : 1 ≤ i < j ≤ n; gcd(i, j) = 1}

∣∣∣ =

n∑
i=2

ϕ(i). Therefore,

∣∣∣{(i, j) : 1 ≤ i < j ≤ n, gcd(i, j) = 1}
∣∣∣ = 1 + 2

n∑
i=2

ϕ(i). But this is equivalent to

showing that ∣∣∣{(i, j) : 1 ≤ i < j ≤ n, gcd(i, j) = 1}
∣∣∣ ≥ n(n− 1)

2
+ 3.
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Let f(n) denote the LHS quantity. Observe that f(n) counts the number of pairs
(x, y) ∈ {1, 2, . . . , n}2 such that there is no prime p such that p dividing both x and
y. Using the principal of inclusion-exclusion, we find that

f(n) = n2 −
∑
p

⌊n
p

⌋2
+
∑
p<q

⌊ n

pq

⌋2
−
∑

p<q<r

⌊ n

pqr

⌋2
+ · · · ,

where the indices p, q, r, . . . are prime numbers. It follows that

f(n) ≥ n2 −
∑
p

(
n

p

)2

+
∑
p<q

⌊ n

pq

⌋2
−
∑

p<q<r

(
n

pqr

)2

+ · · ·

> n2

(
1−

∑
p

1

p2
−
∑

p<q<r

1

p2q2r2
− · · ·

)
,

(where only sums with the odd number of primes appear). The RHS can be com-
puted exactly, as we shall explain below. We know that∏

p

(
1− 1

p2

)
= 1−

∑
p

1

p2
+
∑
p<q

1

p2q2
−
∑

p<q<r

1

p2q2r2
+ · · · ,

but also
∏
p

(
1− 1

p2

)−1

=
∑
n≥1

1

n2
= ξ(2) =

π2

6
. So,

1−
∑
p

1

p2
+
∑
p<q

1

p2q2
−
∑

p<q<r

1

p2q2r2
+ · · · = 6

π2
.

On the other hand, we have

1 +
∑
p

1

p2
+
∑
p<q

1

p2q2
+
∑

p<q<r

1

p2q2r2
· · · =

∏
p

(
1− 1

p2

)
=
∏
p

1− 1
p4

1− 1
p2

=
ξ(2)

ξ(4)
=

π2

6

/π4

90
=

15

π2
.

Subtracting the above two results from each other, we find that

1−
∑
p

1

p2
−
∑

p<q<r

1

p2q2r2
− · · · = 1− 1

2

(
15

π2
− 6

π2

)
= 1− 9

2π2
.

Therefore, f(n) ≥
(
1− 9

2π2

)
n2 ≥ 0.544n2, which is greater than n(n−1)

2 + 3 for

all n ≥ 5. This completes the proof. 2

We denote α(n), the maximum number of edges in a prime cordial graph of
order n. The following corollary gives an exact formula for α(n).
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Corollary 2.2. α(n) = n(n− 1)− 2ρ(n) + 1.

Proof. Let λ(n) be the maximum number of edges labeled 0 in a prime cor-

dial graph of order n. Hence, λ(n) =
n(n− 1)

2
− ρ(n). From Theorem 2.1

2λ(n) ≤ α(n) ≤ 2λ(n) + 1 for every n ≥ 1, then α(n) = n(n− 1)− 2ρ(n) + 1. 2

The following corollary gives a necessary condition for a graph of order n and
size q to be prime cordial.

Corollary 2.3. If G is a prime cordial graph of order n and size q, then q ≤ α(n).

The following table shows the values of ρ(n) and α(n) for all n ≤ 12

n 1 2 3 4 5 6 7 8 9 10 11 12
ρ(n) 0 1 3 5 9 11 17 21 27 31 41 45
α(n) 0 1 1 3 3 9 9 15 19 29 29 43

Seoud and Salim [8] proved that Kn does not have prime cordial labeling for
2 < n < 500 and conjectured that Kn is not prime cordial for all n > 2. Since the

number of edges labeled 1 in Kn is equal to

n∑
i=2

ϕ(i) which is always odd for every

n ≥ 2, then Kn, n ≡ 0 or 1(mod 8) is not prime cordial, because in this case, the
graph is of size 0 ≡ (mod 4). This contradicts that the number of edges labeled 1
is odd. However, by Corollary 2.3, we will obtain the following theorem

Theorem 2.4. Kn is not prime cordial for all n ≥ 3.

Proof. From Theorem 2.1, ρ(n) ≥ n(n− 1)

4
+ 1, we have

ρ(n) >
n(n− 1)

4
+

1

2
⇒ 2ρ(n) >

n(n− 1)

2
+ 1

⇒ n(n− 1)

2
+ 2ρ(n) > n(n− 1) + 1

⇒ n(n− 1)

2
> n(n− 1)− 2ρ(n) + 1 = α(n).

That is |E(Kn)| > α(n) and the graph is not prime cordial from Corollary 2.3. 2

The helm Hn (n ≥ 3) is the graph obtained from a wheel Wn by attaching a
pendant edge at each vertex of the n-cycle, while the closed helm H̄n is the graph
obtained from a helm by joining each pendant vertex to form a cycle. We show that
a closed helm H̄n have prime cordial labeling for all n ≥ 6.

Theorem 2.5. H̄n is prime cordial for all n ≥ 6.

Proof. Necessity, a direct computation shows that if H̄3, H̄4 or H̄5 has a prime
cordial labeling, then q0(H̄3) ≤ 4, q0(H̄4) ≤ 7 or q0(H̄5) ≤ 9. For sufficiency, let
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V (H̄n) = {v0, v1, v2, . . . , vn, u1, u2, . . . , un} and
E(H̄n) = {vivj , uiuj : i− j ≡ ±1(mod n)} ∪{viui : 1 ≤ i ≤ n} ∪ {v0vi : 1 ≤ i ≤ n}
and let f : V (H̄n) → {1, 2, . . . , 2n + 1}. If n = 6, we give a prime cor-
dial labeling f as follows: (f(v0), f(v1), f(v2), . . . , f(vn)) = (6, 2, 4, 8, 10, 12, 3)
and (f(u1), f(u2), . . . , f(un) = (1, 5, 7, 11, 13, 9). If n ≥ 7, we define f as fol-
lows: f(v0) = 2, f(v1) = 3, f(vi) = 2(i + 1), 2 ≤ i ≤ n − 1, f(vn) = 4
f(u1) = 9, f(u2) = 5, f(u3) = 7, f(u4) = 11, f(u5) = 15, f(u6) = 13, f(uj) =
2j + 3, 7 ≤ j ≤ n − 1, f(un) = 1. The number of edges labeled 0 obtained from
the even vertex labels on the inner cycle is equal to n− 2 beside one more from the
vertex labels 3 and 6. The number of edges labeled 0 obtained from the label of the
apex vertex and the rim vertices of the inner cycle is equal to n− 1 and finally the
vertex labels 3;9 and 12;15 give two edges labeled 0. Hence q0(H̄n) = 2n = q1(H̄n)
and this completes the proof. 2

Vaidya and Shah [12] proved that P 2
n is a prime cordial if n = 6 and n ≥ 8.

Here we introduce a simple proof for this result

Theorem 2.6. P 2
n , n ≥ 3 is prime cordial if and only if n ≥ 6, n ̸= 7.

Proof. Necessity follows from Corollary 2.3. For sufficiency, first we give a
prime cordial labeling f of P 2

n , n = 6, 8, 9 and 10 in the following pattern:
(f(v1), f(v2), . . . , f(vn)) where V (Pn) = {v1, v2, . . . , vn}:
n = 6 : (2, 4, 6, 3, 1, 5), n = 8 : (2, 4, 8, 6, 3, 1, 5, 7), n = 9 : (2, 4, 8, 6, 3, 9, 1, 5, 7), n =
10 : (2, 4, 8, 10, 6, 3, 1, 9, 5, 7).

Now, let n be even and n ≥ 12. We describe the prime cordial labeling as the
above pattern:(2, 4, 8, 10, . . . , n, 6, 3, 1, 9, 5, 7, 11, 13, . . . , n−1). Then q0(P

2
n) = n−1

and q1(P
2
n) = n − 2, and P 2

n is prime cordial in this case. If n is odd and n ≥ 11,
we label P 2

n−1 as in the former case and then we label the remaining vertex by the
label n. Then q0(P

2
n) = n− 2 and q1(P

2
n) = n− 1, and again P 2

n is prime cordial.2

Vaidya and Shah [12] proved that C2
n is a prime cordial for n ≥ 10. The proof is

incorrect, in fact, the labeling function does not work in some cases. For example,

C2
21 is not prime cordial under this labeling since

∣∣∣q0(C2
21)− q1(C

2
21)
∣∣∣ = 2 and more

generally the case n ≡ 21 (mod 30) does not work. In the following theorem we
correct this result.

Theorem 2.7. C2
n, n ≥ 4 is prime cordial if and only if n ≥ 10.

Proof. If 4 ≤ n ≤ 8, then C2
n is not prime cordial by Corollary 2.3. If n = 9,

then q0(C
2
9 ) ≤ 8 for any prime cordial labeling function and hence C2

9 is not prime
cordial. Conversely, first we give a prime cordial labeling f of C2

n, n = 10 in the
following pattern: (f(v1), f(v2), . . . , f(vn)) where V (Cn) = {v1, v2, . . . , vn}: n =
10 : (4, 8, 10, 2, 6, 3, 9, 1, 5, 7). If n is even and n ≥ 12, we describe the prime cordial
labeling as the above pattern: (4, 8, 10, . . . , n, 2, 6, 3, 9, 1, 5, 7, 11, . . . , n − 1). The

consecutive vertex labels of even labels give
(n
2
− 1
)
+
(n
2
− 2
)
edges of label 0 and

the vertex labels 6, 3 and 9 give 3 edges labeled 0. Hence q0(C
2
n) = n and q1(C

2
n) =
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n. If n = 11, 13, we describe the prime cordial labeling as the above pattern: n =
11 : (10, 2, 4, 8, 6, 3, 9, 1, 7, 11, 5), n = 13 : (4, 8, 10, 2, 12, 6, 3, 9, 1, 5, 7, 11, 13). If n is
odd and n ≥ 15, we give the vertex prime cordial labeling in the following pattern:
(4, 8, 10, 14, 16, . . . , n − 1, 2, 12, 6, 3, 9, 1, 5, 7, 11, 13, . . . , n). The consecutive vertex

labels of even labels give

(
n− 3

2

)
+

(
n− 5

2

)
edges of label 0 and the vertex labels

6, 3 and 9 give 3 edges labeled 0. Finally the vertex labels 3 and 12 give a an edge
labeled 0. Hence q0(C

2
n) = n and q1(C

2
n) = n. 2
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