KYUNGPOOK Math. J. 56(2016), 41-46 http://dx.doi.org/10.5666/KMJ.2016.56.1.41 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

On Prime Cordial Labeling of Graphs

Abdullah Aljouiee

Department of Mathematics and Statistics, College of Science, Al Imam Mohammad Ibn Saud Islamic University, P. O. Box 90189, Riyadh 11613, Saudi Arabia e-mail: joa111@gmail.com

ABSTRACT. A graph G of order n has prime cordial labeling if its vertices can be assigned the distinct labels $1, 2 \cdots, n$ such that if each edge xy in G is assigned the label 1 in case the labels of x and y are relatively prime and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In this paper, we give a complete characterization of complete graphs which are prime cordial and we give a prime cordial labeling of the closed helm \bar{H}_n , and present a new way of prime cordial labeling of P_n^2 . Finally we make a correction of the proof of Theorem 2.5 in [12].

1. Introduction

All graphs in this paper are finite, simple and undirected. We follow the basic notation and terminology of graph theory as in [2].

The notion of prime labeling originated with Entringer and was introduced in a paper by Tout, Dabboucy and Howalla [11]. A graph G of order n with vertex set V(G) is said to have prime labeling if its vertices are labeled with distinct integers $1, 2, \dots, n$ such that for each edge xy the labels assigned to x and y are relatively prime. Around 1980, Entringer conjectured that all trees have prime labeling. So far, there has been a little progress towards proving this conjecture. Among the classes of trees known to have prime labelings are: paths, stars, caterpillars, complete binary trees, spiders (i.e., trees with one vertex of degree at least 3 and with every other vertex has degree at most 2), olive trees (i.e., rooted trees consisting of k branches such that the i^{th} branch is a path of length i) and all trees of order up to 50. The notion of cordial labeling of graphs was introduced by Cahit [1] in 1987. Sundaram, Ponraj and Somasundaram [10] have introduced the notion of prime cordial labelings motivated by the prime and cordial labelings. A prime cordial labeling of a graph G with vertex set V(G) is a bijection f from V(G) to

Received September 27, 2013; revised January 22, 2014; accepted January 29, 2014. 2010 Mathematics Subject Classification: 05C78.

Key words and phrases: Prime labeling, Prime cordial labeling.

 $\{1, 2, \dots n\}$ where n = |V(G)| such that if each edge uv is assigned the label 1 if gcd(f(u), f(v)) = 1 and 0 if gcd(f(u), f(v)) > 1, then the number of edges labeled with 0 and the number of edges labeled with 1 differ at most by 1.

For i = 0, 1, let $q_i(G)$ denote the number of edge labeled i under a prime cordial function f. In [10], Sundaram and others proved that the following graphs are prime cordial: C_n if and only if $n \ge 6$, P_n if and only if $n \ne 3$ or 5; $K_{1,n}$ (n odd); the graph obtained by subdividing each edge of $K_{1,n}$ if and only if $n \neq 3$. They also proved that if G is a prime cordial graph of even size, then the graph obtained by identifying the central vertex of $K_{1,n}$ with the vertex of G labeled with 2 is prime cordial, and if G is a prime cordial graph of odd size, then the graph obtained by identifying the central vertex of $K_{1,2n}$ with the vertex of G labeled with 2 is prime cordial. They further proved that K_n is not prime cordial for $4 \le n \le 181$ and $K_{m,n}$ is not prime cordial for a number of special cases of m and n. Vaidya and Shah [13] proved that W_n is prime cordial if and only if $n \ge 8$. See ([3]-[13]) for related results. The reference [4] surveys the current state of knowledge for all variations of graph labelings appearing in this paper.

A graph G of order n is prime if and only if G is isomorphic to a spanning subgraph of the graph R_n of order n with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$ and whose edge set is defined as $E(R_n) = \{v_i v_j : \gcd(i, j) = 1\}$. We call R_n the maximal prime graph of order n and $\rho(n) = |E(R_n)|$, is the maximum number of edges in a prime graph of order n. Seoud and Youssef [9] proved that $\rho(n) = |E(R_n)| = \sum_{i=1}^{n} \phi(i) - 1$,

where ϕ is the Euler's phi function. It follows that $\rho(n)$ is the maximum number of

edges labeled 1 in a prime cordial graph of order n.

2. Main Results

In [10] Sundaram and others conjectured that $\sum_{i=2}^{n} \phi(i) \ge \frac{1}{2} \binom{n}{2} + 1$. The following is a proof of this conjecture.

Theorem 2.1. With the setting above, the following inequality holds

$$\sum_{i=2}^{n} \phi(i) \ge \frac{1}{2} \binom{n}{2} + 1, \text{ for all } n \ge 3.$$

Proof. The case n = 3, 4 can be checked manually. So we assume that $n \ge 5$.

We see that $\left|\{(i,j) : 1 \leq i < j \leq n; \ \gcd(i,j) = 1\}\right| = \sum_{i=2}^{n} \phi(i)$. Therefore, $\left|\{(i,j) : 1 \leq i < j \leq n, \ \gcd(i,j) = 1\}\right| = 1 + 2\sum_{i=2}^{n} \phi(i)$. But this is equivalent to

showing that

$$\Big|\{(i,j): 1 \le i < j \le n, \ \gcd(i,j) = 1\}\Big| \ge \frac{n(n-1)}{2} + 3.$$

Let f(n) denote the LHS quantity. Observe that f(n) counts the number of pairs $(x, y) \in \{1, 2, ..., n\}^2$ such that there is no prime p such that p dividing both x and y. Using the principal of inclusion-exclusion, we find that

$$f(n) = n^2 - \sum_p \left\lfloor \frac{n}{p} \right\rfloor^2 + \sum_{p < q} \left\lfloor \frac{n}{pq} \right\rfloor^2 - \sum_{p < q < r} \left\lfloor \frac{n}{pqr} \right\rfloor^2 + \cdots,$$

where the indices p, q, r, \ldots are prime numbers. It follows that

$$f(n) \ge n^2 - \sum_p \left(\frac{n}{p}\right)^2 + \sum_{p < q} \left\lfloor\frac{n}{pq}\right\rfloor^2 - \sum_{p < q < r} \left(\frac{n}{pqr}\right)^2 + \cdots$$
$$> n^2 \left(1 - \sum_p \frac{1}{p^2} - \sum_{p < q < r} \frac{1}{p^2 q^2 r^2} - \cdots\right),$$

(where only sums with the odd number of primes appear). The RHS can be computed exactly, as we shall explain below. We know that

$$\prod_{p} \left(1 - \frac{1}{p^2} \right) = 1 - \sum_{p} \frac{1}{p^2} + \sum_{p < q} \frac{1}{p^2 q^2} - \sum_{p < q < r} \frac{1}{p^2 q^2 r^2} + \cdots$$

but also
$$\prod_{p} \left(1 - \frac{1}{p^2} \right)^{-1} = \sum_{n \ge 1} \frac{1}{n^2} = \xi(2) = \frac{\pi^2}{6}.$$
 So,
$$1 - \sum_{p} \frac{1}{p^2} + \sum_{p < q} \frac{1}{p^2 q^2} - \sum_{p < q < r} \frac{1}{p^2 q^2 r^2} + \cdots = \frac{6}{\pi^2}.$$

On the other hand, we have

$$1 + \sum_{p} \frac{1}{p^2} + \sum_{p < q} \frac{1}{p^2 q^2} + \sum_{p < q < r} \frac{1}{p^2 q^2 r^2} \dots = \prod_{p} \left(1 - \frac{1}{p^2} \right) = \prod_{p} \frac{1 - \frac{1}{p^4}}{1 - \frac{1}{p^2}}$$
$$= \frac{\xi(2)}{\xi(4)} = \frac{\pi^2}{6} / \frac{\pi^4}{90} = \frac{15}{\pi^2}.$$

Subtracting the above two results from each other, we find that

$$1 - \sum_{p} \frac{1}{p^2} - \sum_{p < q < r} \frac{1}{p^2 q^2 r^2} - \dots = 1 - \frac{1}{2} \left(\frac{15}{\pi^2} - \frac{6}{\pi^2} \right) = 1 - \frac{9}{2\pi^2}.$$

Therefore, $f(n) \ge \left(1 - \frac{9}{2\pi^2}\right)n^2 \ge 0.544n^2$, which is greater than $\frac{n(n-1)}{2} + 3$ for all $n \ge 5$. This completes the proof.

We denote $\alpha(n)$, the maximum number of edges in a prime cordial graph of order n. The following corollary gives an exact formula for $\alpha(n)$.

,

Abdullah Aljouiee

Corollary 2.2. $\alpha(n) = n(n-1) - 2\rho(n) + 1$.

Proof. Let $\lambda(n)$ be the maximum number of edges labeled 0 in a prime cordial graph of order n. Hence, $\lambda(n) = \frac{n(n-1)}{2} - \rho(n)$. From Theorem 2.1 $2\lambda(n) \leq \alpha(n) \leq 2\lambda(n) + 1$ for every $n \geq 1$, then $\alpha(n) = n(n-1) - 2\rho(n) + 1$. \Box

The following corollary gives a necessary condition for a graph of order n and size q to be prime cordial.

Corollary 2.3. If G is a prime cordial graph of order n and size q, then $q \leq \alpha(n)$.

The following table shows the values of $\rho(n)$ and $\alpha(n)$ for all $n \leq 12$

n	1	2	3	4	5	6	7	8	9	10	11	12
$\rho(n)$	0	1	3	5	9	11	17	21	27	31	41	45
$\alpha(n)$	0	1	1	3	3	9	9	15	19	29	29	43

Seoud and Salim [8] proved that K_n does not have prime cordial labeling for 2 < n < 500 and conjectured that K_n is not prime cordial for all n > 2. Since the number of edges labeled 1 in K_n is equal to $\sum_{i=2}^{n} \phi(i)$ which is always odd for every $n \ge 2$, then K_n , $n \equiv 0$ or 1(mod 8) is not prime cordial, because in this case, the graph is of size $0 \equiv (\text{mod } 4)$. This contradicts that the number of edges labeled 1 is odd. However, by Corollary 2.3, we will obtain the following theorem

Theorem 2.4. K_n is not prime cordial for all $n \ge 3$. *Proof.* From Theorem 2.1, $\rho(n) \ge \frac{n(n-1)}{4} + 1$, we have

$$\rho(n) > \frac{n(n-1)}{4} + \frac{1}{2} \Rightarrow 2\rho(n) > \frac{n(n-1)}{2} + 1$$

$$\Rightarrow \frac{n(n-1)}{2} + 2\rho(n) > n(n-1) + 1$$

$$\Rightarrow \frac{n(n-1)}{2} > n(n-1) - 2\rho(n) + 1 = \alpha(n).$$

That is $|E(K_n)| > \alpha(n)$ and the graph is not prime cordial from Corollary 2.3. \Box

The helm H_n $(n \ge 3)$ is the graph obtained from a wheel W_n by attaching a pendant edge at each vertex of the *n*-cycle, while the closed helm \bar{H}_n is the graph obtained from a helm by joining each pendant vertex to form a cycle. We show that a closed helm \bar{H}_n have prime cordial labeling for all $n \ge 6$.

Theorem 2.5. \overline{H}_n is prime cordial for all $n \ge 6$.

Proof. Necessity, a direct computation shows that if \bar{H}_3 , \bar{H}_4 or \bar{H}_5 has a prime cordial labeling, then $q_0(\bar{H}_3) \leq 4$, $q_0(\bar{H}_4) \leq 7$ or $q_0(\bar{H}_5) \leq 9$. For sufficiency, let

44

 $V(\bar{H}_n) = \{v_0, v_1, v_2, \dots, v_n, u_1, u_2, \dots, u_n\}$ and

$$\begin{split} E(\bar{H}_n) &= \{v_i v_j, u_i u_j : i-j \equiv \pm 1 (\text{mod } n)\} \cup \{v_i u_i : 1 \leq i \leq n\} \cup \{v_0 v_i : 1 \leq i \leq n\} \\ \text{and let } f : V(\bar{H}_n) \rightarrow \{1, 2, \dots, 2n+1\}. \quad \text{If } n = 6, \text{ we give a prime cordial labeling } f \text{ as follows: } (f(v_0), f(v_1), f(v_2), \dots, f(v_n)) = (6, 2, 4, 8, 10, 12, 3) \\ \text{and } (f(u_1), f(u_2), \dots, f(u_n)) = (1, 5, 7, 11, 13, 9). \quad \text{If } n \geq 7, \text{ we define } f \text{ as follows: } f(v_0) = 2, f(v_1) = 3, f(v_i) = 2(i+1), 2 \leq i \leq n-1, f(v_n) = 4 \\ f(u_1) = 9, f(u_2) = 5, f(u_3) = 7, f(u_4) = 11, f(u_5) = 15, f(u_6) = 13, f(u_j) = 2j + 3, 7 \leq j \leq n-1, f(u_n) = 1. \end{split}$$
 The number of edges labeled 0 obtained from the vertex labels 3 and 6. The number of edges labeled 0 obtained from the label of the apex vertex and the rim vertices of the inner cycle is equal to n-1 and finally the vertex labels 3;9 and 12;15 give two edges labeled 0. Hence $q_0(\bar{H}_n) = 2n = q_1(\bar{H}_n)$ and this completes the proof. \Box

Vaidya and Shah [12] proved that P_n^2 is a prime cordial if n = 6 and $n \ge 8$. Here we introduce a simple proof for this result

Theorem 2.6. $P_n^2, n \ge 3$ is prime cordial if and only if $n \ge 6, n \ne 7$.

Proof. Necessity follows from Corollary 2.3. For sufficiency, first we give a prime cordial labeling f of P_n^2 , n = 6, 8, 9 and 10 in the following pattern: $(f(v_1), f(v_2), \ldots, f(v_n))$ where $V(P_n) = \{v_1, v_2, \ldots, v_n\}$: n = 6 : (2, 4, 6, 3, 1, 5), n = 8 : (2, 4, 8, 6, 3, 1, 5, 7), n = 9 : (2, 4, 8, 6, 3, 9, 1, 5, 7), n = 10 : (2, 4, 8, 10, 6, 3, 1, 9, 5, 7).

Now, let n be even and $n \ge 12$. We describe the prime cordial labeling as the above pattern: $(2, 4, 8, 10, \ldots, n, 6, 3, 1, 9, 5, 7, 11, 13, \ldots, n-1)$. Then $q_0(P_n^2) = n-1$ and $q_1(P_n^2) = n-2$, and P_n^2 is prime cordial in this case. If n is odd and $n \ge 11$, we label P_{n-1}^2 as in the former case and then we label the remaining vertex by the label n. Then $q_0(P_n^2) = n-2$ and $q_1(P_n^2) = n-1$, and again P_n^2 is prime cordial. \Box

Vaidya and Shah [12] proved that C_n^2 is a prime cordial for $n \ge 10$. The proof is incorrect, in fact, the labeling function does not work in some cases. For example, C_{21}^2 is not prime cordial under this labeling since $|q_0(C_{21}^2) - q_1(C_{21}^2)| = 2$ and more generally the case $n \equiv 21 \pmod{30}$ does not work. In the following theorem we correct this result.

Theorem 2.7. C_n^2 , $n \ge 4$ is prime cordial if and only if $n \ge 10$.

Proof. If $4 \le n \le 8$, then C_n^2 is not prime cordial by Corollary 2.3. If n = 9, then $q_0(C_9^2) \le 8$ for any prime cordial labeling function and hence C_9^2 is not prime cordial. Conversely, first we give a prime cordial labeling f of $C_n^2, n = 10$ in the following pattern: $(f(v_1), f(v_2), \ldots, f(v_n))$ where $V(C_n) = \{v_1, v_2, \ldots, v_n\}$: n = 10 : (4, 8, 10, 2, 6, 3, 9, 1, 5, 7). If n is even and $n \ge 12$, we describe the prime cordial labeling as the above pattern: $(4, 8, 10, \ldots, n, 2, 6, 3, 9, 1, 5, 7, 11, \ldots, n - 1)$. The consecutive vertex labels of even labels give $\left(\frac{n}{2} - 1\right) + \left(\frac{n}{2} - 2\right)$ edges of label 0 and the vertex labels 6, 3 and 9 give 3 edges labeled 0. Hence $q_0(C_n^2) = n$ and $q_1(C_n^2) = 1$

n. If n = 11, 13, we describe the prime cordial labeling as the above pattern: n = 11 : (10, 2, 4, 8, 6, 3, 9, 1, 7, 11, 5), n = 13 : (4, 8, 10, 2, 12, 6, 3, 9, 1, 5, 7, 11, 13). If n is odd and $n \ge 15$, we give the vertex prime cordial labeling in the following pattern: $(4, 8, 10, 14, 16, \ldots, n - 1, 2, 12, 6, 3, 9, 1, 5, 7, 11, 13, \ldots, n)$. The consecutive vertex labels of even labels give $\left(\frac{n-3}{2}\right) + \left(\frac{n-5}{2}\right)$ edges of label 0 and the vertex labels 6, 3 and 9 give 3 edges labeled 0. Finally the vertex labels 3 and 12 give a an edge labeled 0. Hence $q_0(C_n^2) = n$ and $q_1(C_n^2) = n$.

Acknowledgment. The author would like to thank Yufei Zhao for his great contribution in proving Theorem 2.1.

References

- I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin., 23(1987), 201–207.
- [2] G. Chartrand and L. Lesniak-Foster, *Graphs and Digraphs* (3rd Edition) CRC Press, 1996.
- [3] T. Deretsky, S. M. Lee, and J. Mitchem, On vertex prime labelings of graphs, in Graph Theory, Combinatorics and Applications Vol. 1, J. Alavi, G. Chartrand, O. Oellerman, and A. Schwenk, eds., Proceedings 6th International Conference Theory and Applications of Graphs (Wiley, New York, 1991), 359–369.
- [4] J. A. Gallian, A dynamic survey of graph labeling, The Electronic J. of Combin., 17(2014), DS6, 1–384.
- [5] H. L. Fu and K. C. Huang, On prime labeling, Discrete Math., **127**(1994), 181–186.
- [6] S. M. Lee, I. Wui and J. Yeh, On the amalgamation of prime graphs, Bull. Malaysian Math. Soc. (Second Series), 11(1988), 59–67.
- [7] O. Pikhurko, Every tree with at most 34 vertices is prime, Util. Math., 62(2002), 185–190.
- [8] M. A. Seoud and M. A. Salim, Two upper bounds of prime cordial graphs, JCMCC, 75(2010), 95–103.
- [9] M. A. Seoud and M. Z. Youssef, On prime labelings of graphs, Congr. Numer., 141(1999), 203–215.
- [10] M. Sundaram, R. O. Ponraj, and S. Somasundaram, Prime cordial labeling of graphs, J. Indian Acad. Math., 27(2005), 373–390.
- [11] A. Tout, A. N. Dabboucy, and K. Howalla, Prime labeling of graphs, Nat. Acad. Sci. Letters, 11(1982), 365–368.
- [12] S. K. Vaidya and N. H. Shah, Some new families of prime cordial graphs, Journal of Mathematics Research, 3(4)(2011), 21–30.
- [13] S. K. Vaidya and N. H. Shah, Prime cordial labeling of some graphs, Open Journal of Discrete Mathematics, 2(2012), 11–16.