• Title/Summary/Keyword: prime module

Search Result 110, Processing Time 0.023 seconds

CERTAIN DISCRIMINATIONS OF PRIME ENDOMORPHISM AND PRIME MATRIX

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.14 no.2
    • /
    • pp.259-268
    • /
    • 1998
  • In this paper, for a commutative ring R with an identity, considering the endomorphism ring $End_R$(M) of left R-module $_RM$ which is (quasi-)injective or (quasi-)projective, some discriminations of prime endomorphism were found as follows: each epimorphism with the irreducible(or simple) kernel on a (quasi-)injective module and each monomorphism with maximal image on a (quasi-)projective module are prime. It was shown that for a field F, any given square matrix in $Mat_{n{\times}n}$(F) with maximal image and irreducible kernel is a prime matrix, furthermore, any given matrix in $Mat_{n{\times}n}$(F) for any field F can be factored into a product of prime matrices.

  • PDF

STRONGLY IRREDUCIBLE SUBMODULES

  • ATANI, SHAHABADDIN EBRAHIMI
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.121-131
    • /
    • 2005
  • This paper is motivated by the results in [6]. We study some properties of strongly irreducible submodules of a module. In fact, our objective is to investigate strongly irreducible modules and to examine in particular when sub modules of a module are strongly irreducible. For example, we show that prime submodules of a multiplication module are strongly irreducible, and a characterization is given of a multiplication module over a Noetherian ring which contain a non-prime strongly irreducible submodule.

A NOTE ON MONOFORM MODULES

  • Hajikarimi, Alireza;Naghipour, Ali Reza
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.505-514
    • /
    • 2019
  • Let R be a commutative ring with identity and M be a unitary R-module. A submodule N of M is called a dense submodule if $Hom_R(M/N,\;E_R(M))=0$, where $E_R(M)$ is the injective hull of M. The R-module M is said to be monoform if any nonzero submodule of M is a dense submodule. In this paper, among the other results, it is shown that any kind of the following module is monoform. (1) The prime R-module M such that for any nonzero submodule N of M, $Ann_R(M/N){\neq}Ann_R(M)$. (2) Strongly prime R-module. (3) Faithful multiplication module over an integral domain.

ASSOCIATED PRIME SUBMODULES OF A MULTIPLICATION MODULE

  • Lee, Sang Cheol;Song, Yeong Moo;Varmazyar, Rezvan
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.275-296
    • /
    • 2017
  • All rings considered here are commutative rings with identity and all modules considered here are unital left modules. A submodule N of an R-module M is said to be extended to M if $N=aM$ for some ideal a of R and it is said to be fully invariant if ${\varphi}(L){\subseteq}L$ for every ${\varphi}{\in}End(M)$. An R-module M is called a [resp., fully invariant] multiplication module if every [resp., fully invariant] submodule is extended to M. The class of fully invariant multiplication modules is bigger than the class of multiplication modules. We deal with prime submodules and associated prime submodules of fully invariant multiplication modules. In particular, when M is a nonzero faithful multiplication module over a Noetherian ring, we characterize the zero-divisors of M in terms of the associated prime submodules, and we show that the set Aps(M) of associated prime submodules of M determines the set $Zdv_M(M)$ of zero-dvisors of M and the support Supp(M) of M.

MODULES WITH PRIME ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.5
    • /
    • pp.987-1030
    • /
    • 2001
  • Some discrimination of modules whose endomorhism rings are prime is introduced, by means of structures of submodules inducing prime ideals of the endomorphism ring End(sub)R (M) of a left R-module (sub)RM over a ring R. Modules with non-prime endomorphism rings are contrapositively studied as well.

  • PDF

ON NOETHERIAN PSEUDO-PRIME SPECTRUM OF A TOPOLOGICAL LE-MODULE

  • Anjan Kumar Bhuniya;Manas Kumbhakar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • An le-module M over a commutative ring R is a complete lattice ordered additive monoid (M, ⩽, +) having the greatest element e together with a module like action of R. This article characterizes the le-modules RM such that the pseudo-prime spectrum XM endowed with the Zariski topology is a Noetherian topological space. If the ring R is Noetherian and the pseudo-prime radical of every submodule elements of RM coincides with its Zariski radical, then XM is a Noetherian topological space. Also we prove that if R is Noetherian and for every submodule element n of M there is an ideal I of R such that V (n) = V (Ie), then the topological space XM is spectral.

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF